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Summary. We construct an asymptotic expansion on a small parameter of the solution of the Cauchy problem for a singularly 

perturbed system of transport equations with small nonlinearity and mutual diffusion describing the transport in a multiphase medium 

for many spatial variables.  The asymptotic expansion of the solution is constructed as a series in powers of a small parameter and 

contains a functions of the boundary and inner layers. The main part of the asymptotics is described by one equation, which under 

certain requirements on the nonlinearity and diffusion terms is a generalization of the equation Burgers -Korteweg-de Vries in the 

case of many spatial variables. 

 

 Statement of the problem 

The asymptotic expansion  (AE) of the solution of the Cauchy problem for a singularly perturbed system of transport 

equations with small nonlinearity and diffusion is constructed 
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Here U ={u1,...,un} is the solution, 0<ε<<1 is a small positive parameter, Di   is a diagonal constant matrix, the function 

F(U)  and  the matrix Bij(U)  are smooth enough, smooth function ω(x) is rapidly decreasing together with all 

derivatives. Matrix A has a single zero eigenvalue, which corresponds to the eigenvector h0 , vector h*0 - eigenvector of 

the matrix AT, corresponding to the zero eigenvalue, non-zero eigenvalues of the matrix A is imposed condition Re λ <0. 

Below, without limiting generality, we put (h0,h0*)=1. Additionally, it is required that  

     0 0
, * 0,   * 0  , , 1,..., ,Re 0 0. T

ij
F Z h B Z h Z i j m                            (3) 

Such systems of equations can describe the transfer of substances in multiphase media. 

The AE of the solution  up to order N  (determined by the smoothness of the input data) is constructed by the method of 

boundary functions [4] and has the form 

 0

2

0 0 0 0

( , ) ( ( , ) ( , )) ,

( ) / , / , / , {( , ) / ( , ), 1,..., }.

N
i

i i N N N

i

i

U x t s t R U R

x Vt x t V D h h h h i m

    

     



 

    

     


                                           (4) 

The construction of AE members is described in detail in [1], [2], [3] and others. In accordance with the boundary layer 

method of A. V. Vasilyeva and V. F. Butuzov [4] we present nonlinear function F(U) in the form 
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A similar representation is made for B(U)  

( )   .B U B SB B RB     

 Construction of asymptotic expansion of the solution 

  

Construction     regular part  AE   

Regular part  AE  have the form   

0

( , ) ( , ).
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i

U x t u x t

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                                                                                                                             (5) 

The term   U plays a supporting role.     

Substitute the expantion  (5) in the system (6)  
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and  we obtain the equations for the terms of the expansion [4]:  
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 The equation at ε is solvable by   condition (3). 

Hence 
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 Here G is a pseudo-inverse to A operator, u0 and u1 are some scalar functions. 

We write down the condition of solvability of the equation at ε2: 
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From condition (3) follows 
0
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 Therefore the solvability condition gives the equation for u0 
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 From the regular part of initial conditions
0
( ,0) 0u x   it follows 

0
( , ) 0 , .u x t x t   

Similarly, all other  ui  are zero.  The values 
i

V will be used below. 

 

Construction S function 

S function have the form  
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Vi defined by the formula (7). 

Function S is the solution of the system  

2 3

1 , 1

( ) , , 0.
i i j

m m

t i x ij x x

i i j

S D S AS SF SB S t   
 

       
                                                       (9) 

Moving to the variables ( , )t   taking into account 0,U  we get 
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Than we obtain the equations for the terms of the expansion [4]  
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From here, taking into account the condition (3), we get 

 

0 0 0

1 1 0 1

( , ) ( , ) ,

( , ) ( , ) .

s t t h

s t t h GQ

  

  



 
 

We write down the solvability conditions of the equation at ε2: 
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 Substituting here the expression for s1 and taking into account the conditions (3) as well as equality 

0 0 0 0
( , * ) (( ) , * ) 0, 

i i i
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 we obtain equation for determining
0
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Then the equation for determining 0
   can be rewritten as 
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In the expanded form the equation has the form 
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We will impose an additional condition  

2

, 1 1

0 0.
m m

ij i j i

i j i

M z z z
 

   
 

To obtain the equation for sn, n≥1, we write the expansion terms of order εn, εn+1 and εn+2  : 
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where Q 1 is defined above, and Q p  for p>1  is expressed in terms of previously found  sp-1   
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From the relations for j=n,n+1 it follows that 
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where φ n, φ n+1 are as yet unknown functions. 

Writing the solvability condition  , 2 0
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after exception of s n+1  , we obtain the equation for s n .    Adding a designation 
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taking into account the notations introduced earlier, the linear equation for  φ n  can be rewritten as 
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where Φ n is expressed by the previously found φ j, j<n. 

 

Construction Π function 

To satisfy the initial conditions the function П  is constructed.  

Π function have the form  
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produced as standard [4].  Function Π is the solution of the system  
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together with satisfies the initial conditions and is a boundary layer function 
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The main term is defined as the solution of the system 

   
0, 0

, , 0.p Ap


   
                                                                                                                 (16) 

The initial conditions for φ 0 and  p 0 are defined together, with the addition of the constraint condition p 0 at τ→∞: 

0 0 00
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t
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 From conditions (17), we obtain the initial conditions for  φ 0  and  p 0  .The solution of problem (16) with initial 

condition (17) and condition at infinity exists and satisfies the estimate  

  
0
( , ) exp( ), 0.p С     

                                                                                                                  (18) 

The remaining p i are defined as solutions of linear inhomogeneous ODES and satisfy similar estimates: 

,
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i i i
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
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i
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Here   Pi  is expressed through previously found p j, j<i. 

The initial conditions for the functions φ i  and  p i  are obtained together from the conditions 

1 1
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i i i

i i

s p p


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what gives 

( ,0) ( ,0) 0, ( , ) 0 0.
i i i

s p p i


   
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From conditions (21) we obtain the initial conditions for  the functions φ i  and  p i.   

 

Evaluation of the residual member  

The residual term is estimated by the residual term in the problem. 

The question of the existence of a solution and exponential estimates of the solution of equations (1)-(2), (11)-(17)  

under rapidly decreasing initial conditions for the variable ζ   not considered here.  

The residual term was estimated by residual. 

Let the function ω(z) have derivatives up to N+3rd order, the function F(z) have derivatives up to N+3rd order in the 

domain ||U||<C, C>0, and let ||U(x, 0)||<C-δ, δ>0.    

Theorem.   The solution of the problem (1) - (2) is represented as 
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where UN =SN +ΠN  is the constructed AE, and the residual term RN  satisfies the Cauchy problem    
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  Conclusion   

1. The solution of the problem (1) - (2)  at   t> t0, where  t0 >0 is some fixed (independent of ε), has the form 
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where the principal term AE   φ0(ζ, t) is the solution of the equation   

  
0, 0, , 0 , 0 0,

, 1 1 , , 1

( ( )) ( ( ) ) 0
i j i i j k

m m m

t ij i eff ijk eff

i j i i j k

M F B
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 (generalized Burgers – Korteweg – de Vries equation).  For a quadratic function F (u) and constant matrics  B (u), 

equation (13) is a generalization of the Burgers - Korteweg – de Vries equation [5] to the multidimensional case: 

       

0, 0, 0 0, , 0,

, 1 1 , , 1

0.
i j i i j k

m m m

t ij i ijk eff
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For the case of a single spatial variable, the equation (13) differs from the BKdF equation only in the numerical values 

of the coefficients 

0, 0, 0 0, 0,
0.

t
M k B

  
         

 
2. Very interesting properties of the spatial part (the relationship between the degree of degeneracy of the parabolic part 

of the operator and the dimension of the system (1) are obtained in [1],[3]. 

 

3. For the dissipativity of the equation (11), the condition is sufficient  

2

, 1 1

( ) 0 0.
m m

ij i j i

i j i

M z M z z z
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                                                                                                      (22) 

It is shown in [1] that the set of matrices A that satisfies the conditions imposed above and satisfies the condition (22) is 

not empty. 

 

4. When B (U) =0, the system (1) becomes a system of transfer equations, i.e. a hyperbolic type system. 

In this case, the equation (11) that defines the main AE term has the form  

0, 0, , 0

, 1 1

( ( )) 0,
i j i

m m

t ij i eff

i j i

M F
  

  
 

                                                                                                        (23) 

In [1], a class of matrices A is allocated for which the quadratic form ( )M z ,defining the spatial part of the equation, is 

sign-positive, and the equation (23) i.e. becomes a parabolic equation (such as the Burgers equation). The nature of the 

evolution of the principal term  of the AE can be described as the movement with some "effective speed"  Veff  

0 0
{ ( , ), 1,..., }

eff i i
V V D h h i n    

with simultaneous pseudodiffusion, the nature of which is determined by the coefficients Mij , which is influenced by 

nonlinearity.  

The spatial part with the second derivatives is determined by the symmetric matrix M. In [1] it is obtained that   the 

quadratic form ( )M z  can be degenerate, and the degree of degeneration depends on the ratio of the number of 

equations n and the number of spatial variables m. For a class of matrices A  allocated in [1], for m=3 (three spatial 

variables) and for n=2, the matrix M has two zero eigenvalues and one negative, for n=3 - one zero and two negative, 

for n=4 and more , all eigenvalues of the matrix M become negative.  

Figure 1 shows the evolution of the main AE member for m=3 and n=2, n=3. 

 

                                                                      
                                                                Figure 1. n=2, n=3. 

 

In the case of three-dimensional space, the picture of the solution evolution  of the principal term  of the AE will  have 

the following view. In a two-phase environment, pseudodiffusion processes develop along    one axis (the direction of 

which is given by the vector
1 2

  V   V    ). Accordingly, the initial local perturbation will move in space with an 

"effective" average speed Veff and simultaneously deform, diffusing into a "cloud" extended in the direction of the 

vector Δ. In the case of three phases (a system of three equations), the initial perturbation will move to the Pro- 

travel with the averaged speed and diffuse in the plane of vectors 
1 2 1 3

V   V , V   V ,  forming a flat "cloud". 

In the case of four or more phases (a system of 4 or more equations), the initial perturbation will move at the effective 

velocity Vef and diffuse over all three axes. 

 

5. For the case of B(U) =0 and a slightly different type of nonlinearity, an AE of a similar problem is constructed in [1]. 

When a number of additional conditions are imposed, it is possible to prove the estimate of the residual term of the 

constructed AE in the norm C. 

 

6. The obtained result (11) allows us to identify non-obvious patterns of behavior of the solution of the Cauchy problem 

for singularly perturbed systems of type (1), as well as to identify non-obvious patterns of transfer processes in 

multiphase media in the case of rapid exchange between phases. 

7. The numerical solution of the Cauchy problem for equation (11) requires significantly less computational resources 

than the solution of the original problem (1), due to the fact that equation (11) is not singularly perturbed. 
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