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Summary. This work focuses on the design of a control strategy for consensus of fleets of nonholonomic robots in presence of noisy
measurements. The proposed strategy leads to a hybrid behaviour of the closed-loop dynamics of each robot. Precisely, the robots
sporadically compute references that are kept constant until the next update. Between two updates of the reference the robots will apply
a tracking controller allowing them to approach exponentially fast their targets. The main contributions are related to both the control
design and the analysis of the resulting hybrid closed-loop dynamics. Simulations and real experiments will be presented at ENOC.

Introduction

During the last decades the design of control laws for nonholonomic robots received a lot of attention. This is mainly due to
the fact that Brockett conditions [2] required for smooth stabilisation do not hold for this class of dynamics. To overcome
the fact that smooth state-feedback controllers stabilizing the position and orientation of the robot do not exist, different
discontinuous control laws have been proposed [5, 1]. We also point out that a control design for tracking a smooth
trajectory has been also proposed for nonholonomic robots [4]. It is noteworthy that, all these strategies consider a stand-
alone robot that is continuously controlled. Our objective is to control a fleet of nonholonomic robots in a decentralized
manner and in a harsh environment hampering continuous communications between robots.
The main contribution of our work is twofold: first, the design of a hybrid control strategy for consensus of nonholonomic
robots and second, the stability analysis of the closed-loop system providing minimum dwell-time conditions guaranteeing
the overall system stability. As shown in the Figure 1 below, our strategy contains two loops. The external loop takes
place in discrete time and uses local information related to neighbouring robots state in order to sporadically compute
references of the robots. The internal loop takes place in continuous time, does not require communication with (or
information from) other robots and uses a standard tracking (or point stabilization) controller such as the one proposed in
[4].
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Figure 1: Control structure

Problem formulation
We consider a fleet of n nonholonomic robots that have to reach a consensus in the positions without requiring specific
final orientation of the agents. For the sake of simplicity we remove the time argument t when it is not explicitly needed.
We denote by ri = (rxi

, ryi) the 2D reference position for the robot i and we fix rθi = 0 its heading reference. The
Cartesian coordinates of the center of mass of each vehicle with respect to the fixed inertial frame are denoted using vector
Xi = (xi, yi). Denoting ei = (exi , eyi , eθi)

> the dynamics of the ith robot is described by the following differential
equations

ėi = g(ei)ui, g(ei) =

 cos eθi 0
sin eθi 0

0 1

 , ui =

[
vi
ωi

]
. (1)

where vi is the linear velocity and ωi is the angular velocity of the mobile robot; exi
and eyi are the Cartesian coordinates

of the center of mass of the vehicle with respect to a frame positioned on the reference position ri, and eθi is the angle
between the heading direction and the x-axis of this frame.
The point stabilization control considered in this work is the continuous piecewise smooth control law introduced in [3].
Basically, one considers a map F : R3 7−→ R × (−π, π] relating ei ∈ R3 to zi = (ai, αi)

> ∈ R × (−π, π]. Taking
K, γ > 0 the control law ui = κ(ei) = (−γb1(ei)a,−b2(ei)v − Ka)>, where b1, b2 are explicitly defined in [3],
exponentially stabilizes the origin of the planning reference frame ei = 0. In the following, we denote εi = (exi

, eyi) the
2D Cartesian error coordinates i.e. εi = Xi − ri.

Lemma 1 Let us consider the closed loop dynamics ėi = g(ei)κ(ei) with κ(ei) defined above. Then, there exist positive
constants cε and λε such that ∀t ≥ t0 one has ‖εi(t)‖∞ ≤

√
ncε ‖εi(t0)‖∞ e−λε(t−t0), ∀i ∈ {1, . . . , n}.
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As we previously said, the external loop designs references for each robot based on the sensing of relative positions
of some neighbouring robots. These "interactions" are mathematically captured by a time-varying digraph (directed
graph) G(t) = (V, E(t)), where the vertex-set V represents the set of robots and the edge set E(t) ⊂ V × V collects
the interactions between robots at time t. A path of length p in a digraph Ḡ = (V̄, Ē) is a union of directed edges⋃p
k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p − 1}. The node j is connected with node i in Ḡ = (V̄, Ē) if there

exists at least a path in Ḡ from i to j (i.e. i1 = i and jp = j). A strongly connected digraph is such that any of its two
distinct elements are connected. In the sequel we consider the set of instants when at leat one robot updates its reference
as T = {tk : tk ∈ R+, tk < tk+1,∀k ∈ N, limk→∞ tk =∞}. Moreover, we define Ti ⊂ T selecting the instants when
robot i updates its reference (i.e. T =

⋃n
i=1 Ti). At each instant tk ∈ T a graph structure G(tk) = (V, E(tk)) defines

the interactions between neighbours. Let α ∈ (0, 1), β ∈ (1/2, 1) be given. To each graph structure G = (V, E) we
uniquely associate a row stochastic matrix P satisfying the following properties: Pi,j = 0, if (i, j) /∈ E , Pi,i > β, ∀i =
{1, · · · , n} , Pi,j > α, if (i, j) ∈ E .

Assumption 1 (Connectivity) The digraph G =
⋃
k≥k0 G(tk) is strongly connected for all k0 ∈ N.

Assumption 2 (Bounded Intercommunication Interval) If (i, j) ∈ E(tk) infinitely often, then there is some L ∈ N
such that, for all tk ∈ T , (i, j) ∈ E(tk)

⋃
E(tk+1)

⋃
· · ·
⋃
E(tk+L−1).

Main results

The closed-loop hybrid dynamics associated with the i-th robot (i ∈ {1, . . . , n}) can be formulated as:
ṙi(t) = 0, ėi(t) = g(ei(t))κ(ei(t)) for t ∈ R+ \ Ti,

ri(tk) =

n∑
j=1

Pi,j(tk)εj(t
−
k ) +

n∑
j=1

Pi,j(tk)rj(t
−
k ) + δi(tk), εi(tk) = εi(t

−
k ) + ri(t

−
k )− ri(tk) + δi(tk) for tk ∈ Ti,

where δi(tk) represents the measurement bias whose infinity norm is upper-bounded by δ̄ ∈ R+. Our main objective is to
analyse the ISS property of the overall dynamics of n robots defined above w.r.t the following set:

A =
{
ε, r ∈ R2n | ε = 0, rxi

= rxi
, ryi = rxj

,∀i, j ∈ {1, . . . , n}
}
.

Theorem 1 Let Assumptions 1-2 hold. Then the overall dynamics of n systems defined above is ISS w.r.t. the set A, if the
time between any two consecutive updates of the reference for each robot is larger than τ∗ with

τ∗ =
1

λ
ln max

{
η2cN

1− η1

2L−1∑
l=0

a
2L−1−l
2L−1 ,

c(η3(N − 1) + 1)

(1− n(2L− 1)η3)a

L−1∑
l=0

a
2L−1−l
2L−1

}
> 0,

with η1 = 1− αL, η2 = 4− 2α, η3 = 1− β and a = 1+η1
2 .

Remark 1 • We note that theorem above does not fix the update instants but only provide a minimum dwell-time
between updates of the reference of the same robot. Consequently, very frequent updates are forbidden.

• When δ̄ = 0 (i.e. the sensors provide perfect measurements) the theorem above states thatA is GUAS for the overall
closed-loop dynamics of n nonholonomic robots.

Conclusions

This work formulates a decentralized control strategy for fleets of nonholonomic robots with biased measurements. The
control is designed as follows. In a first step, at sporadic time-instants the robots compute a reference based on measure-
ments of relative postions of some neighbours. In a second step, the robots continuously apply a state-feedback tracking
controller. This yields a hybrid behaviour of the closed-loop dynamics. We show that consensus can be achieved as far as
a certain minimum dwell-time condition between the reference updates of each robot is respected. Simulations and real
experiments will be presented at ENOC.
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