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Summary. This work concerns the trajectory tracking control for Linear Complementarity Systems (LCS) with continuous solutions.

Such systems are strongly nonsmooth and nonlinear. The tracking issue is solved using passivity tools that yield conditions which can

be solved with Linear Matrix Inequalities (LMI). Circuits with ideal diodes illustrate the theoretical developments.

1 Introduction

Trajectory tracking is a major problem in Automatic Control. It is well understood for linear time-invariant systems (see

[1] and references therein) and some classes of nonsmooth systems [2, 3]. In this study, we study the LCS given by






ẋ(t) = Ax(t) +Bλ(t) + Eu(t),
0 ≤ λ(t) ⊥ Cx(t) +Dλ(t) + Fu(t) ≥ 0,
x(0) = x0,

(1)

where x(t) ∈ R
n, u(t) ∈ R

m, λ(t) ∈ R
p with D = 0, D � 0, and D ≻ 0. In case D � 0, we restrict to positive

semidefinite matrices D of the form

(

D1 0
0 0

)

, where D1 ≻ 0 is square of dimension q < p. Our goal is to design the

controller u such that ‖x(t)− xd(t)‖ → 0 as t → ∞, where xd is a desired state trajectory. Generally, to find a controller

satisfying a given reference is a hard problem. Thus our ambition is only to deal with some sub-classes of problems which

we can handle.

1.1 Main Results

Let us first make the following assumptions.

Assumption 1 There exists a multiplier λd such that desired trajectory xd satisfies
{

ẋd(t) = Axd(t) +Bλd(t) + Eud(t)

0 ≤ λd(t) ⊥ Cxd(t) +Dλd(t) + Fud(t) ≥ 0,

for a given input ud ∈ L1
loc(R+;R

m).

Assumption 2 There exists a matrix K such that the quadruple (A+ EK,B,C + FK,D) is strictly passive.

Then the following result holds.

Proposition 1 Suppose that Assumptions 1 and 2 hold. Then the closed-loop system (1) with the state feedback controller

u(t) = K[x(t)− xd(t)] + ud(t)

has a unique global solution x(·), and ‖x(t)− xd(t)‖ → 0 as t → +∞.

The proof is led with the Lyapunov function V (z) = z⊤Pz, z = x− xd, and P = P⊤ ≻ 0 is a solution of the passivity

LMI [4, Lemma 3.16, Theorem 4.73]. The controller gain K is calculated by solving the LMI:
(

QA⊤ +AQ+ L⊤E⊤ + EL+ εQ B −QC⊤ − L⊤F⊤

B⊤ − CQ− FL −(D +D⊤)

)

4 0. (2)

This gives an LMI feasibility problem in the new variables Q = QT ≻ 0 and L. After solving this LMI, the feedback

gain K can be recovered from K = LQ−1. It may happen that the above LMI has no solutions (see [5, section 2.5.1] for

an example). This can be solved by changing the controller structure. Namely, we allow for not only a state feedback, but

also that the multiplier λ(t) be measurable and part of the controller. In practice the multiplier may be voltages or currents

(for circuits) or contact forces (for mechanical systems) and could be measured.

Assumption 3 There exist matrices K,G such that the quadruple (A + EK,B + EG,C + FK,D + FG) is strictly

passive and D+FG is either a zero matrix, or a positive definite matrix, or a matrix in the form

(

D1 0
0 0

)

with D1 ≻ 0.

Proposition 2 Suppose that Assumptions 1 and 3 hold. Then the closed-loop system (1) with the controller

u(t) = K[x(t)− xd(t)] +G[λ(t)− λd(t)] + ud(t)

has a unique global solution x(·) and ‖x(t)− xd(t)‖ → 0 as t → +∞.
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2 Example and Simulations

Let us consider the circuit in Figure 1 with an ideal diode, having the dynamics:







ẋ1(t) = x2(t)

ẋ2(t) = − 1
LC

x1(t) +
λ(t)
L

+ u2(t)
L

0 ≤ λ(t) ⊥ λ(t)
R

+ x2(t)−
u1(t)
R

≥ 0.

.

From Proposition 1, we get the controller u1 = K(x−xd)+ud with K =

(

−1.554224 −0.261066
−3.228662 −3.663074

)

, and from Propo-

sition 2, the controller u2 = K(x−xd)+G(λ−λd)+ud with K =

(

−2.833123 −1.041382
−4.568759 −3.291980

)

, G =

(

−0.500000
5.121218

)

.

λ
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Figure 1: RLCD circuit with two voltage sources.

The matrices are obtained by using YALMIP (https://yalmip.github.io/) with 6-digit accuracy, and using the INRIA code

SICONOS (https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html) to get the numerical results of this

problem. The results are depicted in Figure 2, where x
j
i is the ith component of the closed-loop system’s state with

controller uj , and initial conditions (0.5, 0.5).

3 Conclusions

A detailed presentation of this work is made in the report [5] where well-posedness issues are presented, as well as several

circuits examples with simulations, and all the codes needed to compute the controller gains (MATLAB, YALMIP and

SICONOS).
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Figure 2: The desired trajectory and the state when using controller u1 and u
2.


