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Summary. Non-smooth two variable expansions for impact and impulsively loaded oscillators are introduced. In particular, the role of fast 

temporal scale is assigned to the triangle sine wave, whereas amplitude and/or frequency modulations are described in a smooth slow 

temporal scale. The developed tool allows for derivations of closed form solutions describing non-stationary oscillatory dynamics of systems 

with cyclical impacts or external impulses.  Different illustrating examples of oscillators with amplitude limiters are considered assuming 

the coefficient of restitution is closed to unity.  

Introduction 

Nonstationary dynamics of oscillating systems under non-holonomic constraint conditions became of significant interest 

due to different ideas of using impact oscillators as elements of energy absorbers or harvesters. In contrast to the harmonic 

oscillator, the basic impact oscillator has no specific natural frequency and therefore can interact with different subsystems 

in a wide range of spectrum, which is important property for the design of such devices.  It is shown in this work that the 

‘hyperbolic complexification’ of the state variables provides the adequate way to describing the effect of energy loss 

through specific boundary conditions generated by the triangle wave temporal argument. Then analytical algorithms for 

solving the corresponding boundary value problems are applied. In addition to the possibility of calculations without 

conditioning the variables at collision times, the suggested type of solutions can be effectively used in different analytical 

manipulations dictated by the purpose of study due to the closed form of solutions. 

 

Technical details  
The present analytical procedure essentially involves a couple of piecewise linear functions admitting also representation 

in a closed form through elementary functions (Fig.1a)  
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Figure 1: a) Non-smooth basis, and b) harmonic oscillator with amplitude limiters. 

 

Functions (1) are used in different variations and contents in the literature, see for instance references [1, 2] as relevant to 

the area. However, normalizations for the amplitudes and periods shown in Fig.1 are essential for the present 

methodology, in which the rectangular wave e(t) plays the role of a unipotent of the so-called hyperbolic number due to 

the property 2 1e  . Namely any periodic process x(t) of the period T = 4 admits representation in the form [3] 

( ) ( ) ( )x t X Y e   . In case of modulated oscillatory motions a slow time   is added as 

   

 2( ) ( , ) ( , ) , 1x t X Y e e       (2) 

 

where ( )   , ( )e e  , ( )   , t   ( 0 1  ). 

Then the triangle wave τ is considered as a fast temporal scale of the following two variable expansions 
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Substituting (2-3) into differential equation of motion and using the corresponding condition on velocity at impact times 

leads to the sequence of boundary value problems for X and Y on the interval of the oscillating time argument 1 1    

[4]. Some of the boundary conditions occur as a result of elimination of singularities produced by differentiation of the 
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basic functions (1), whereas specific boundary condition is imposed by the dissipative interaction with amplitude limiters. 

Note that the conventional two variable procedure, which is typically applied to quasi linear vibrating systems, produces 

the differential equations for slow motions as a result of elimination of secular terms from the expansions [5]. Instead the 

present analytical algorithm derives the slow time equations from the boundary conditions at 1   . Due to technical 

complexity of analytical manipulations with series (3) in general form, different adaptations for particular cases at the 

preliminary stage of derivations can be applied. For instance, free impact vibrations of the model shown in Fig.1b do not 

have amplitude modulations as long as the energy remains sufficient for reaching the amplitude limiters. In this case, the 

explicit dependence on η in X and Y terms of expansions (3) can be ignored as it is done in the example below. The effect 

of energy loss is completely captured by the slow varying frequency terms.            

 

Example  
Free vibrations of the illustrating model, which is shown in Fig. 1b, is described with equations 

 

 2 0, | | , ( 0) ( 0), 1 , 0 1i ix x x x t kx t k              (4) 

 

This oscillator experiences impulsive reaction forces from the amplitude limiters at collision times. Therefore, assuming 

that the condition | |x   holds, equation (4) is replaced with  

  2 2 3

0 1 2( ), ( ) ( ) ( ) ( )x x pe p p p p p O                (5) 

where the slowly varying intensity of impulses ( )p  is sequentially determined from the boundary conditions obtained 

by substituting (2) in (5) as 

 2, ,1: 0Y X X p        (6) 

The condition on velocity in (4) gives   

  (1 )1: Y X Y X           (7) 

As mentioned, conditions (6) eliminate singularities produced by substitution of (2) in (5), whereas conditions (7) require 

somewhat detailed consideration [4].  Then conducting two steps of the asymptotic procedure gives finally the closed 

form solution (Fig. 2) 
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Figure 2: Time history of the state variables of impact oscillator with energy loss at its boundaries: 

a) coordinate, and b) velocity showing transition to the so-called ‘grazing’ regime with near zero impact pulses. 

Conclusion 

A class of vibrating systems with perfectly stiff amplitude limiters is considered by means of non-smooth time 

substitutions. The motion is represented as a combination of the oscillating component, which is due to cyclic collisions 

with the limiters, and a slow decay caused by the energy loss at collision times. A specific modification of the two variable 

expansions is used, where the non-smooth (triangle wave) temporal argument is viewed as a fast time while the energy 

decay is described in a slow time scale. As a result, closed-form analytical solutions are obtained that automatically satisfy 

collision conditions with the energy loss. Three qualitatively different basic types of vibrations are considered to cover 

periodic, frequency modulated, and amplitude-frequency modulated motions. 
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