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Summary. Condition, under which thin-walled shallow panels can develop cyclical snap through dynamics due to airflow loads, is derived 

in the explicit analytical form. The methodology is based on the asymptotic of a perfectly flexible structure whose continuous manifold of 

equilibrium positions in the multidimensional space of configurations serves as a family of generating solutions. It is shown that supercritical 

airflows can cause global trajectories near such manifolds associated with a two-way snap through between the original and inverted positions 

of the panel. 

Introduction 

The term ‘flutter’ may cover quite different situations involving different mathematical tools of analyses [1]. The focus 

of the present study is flow induced dynamics with essentially nonlinear snap-through effects. Complexity of such type 

of problems is due to a multimodal strongly nonlinear structural behavior accompanied by a strong spatial coupling 

between the modes. The adapted elastic model of a shallow cylindrical panel ignores the longitudinal inertia term while 

taking into account the influence of membrane forces on the bending deformation as the only cause of geometrical 

nonlinearity [2, 3]. Assuming the presence of some initial imperfection and thus existence of multiple equilibrium 

positions, we define a snap-through flutter as the global panel dynamics with a cyclical self-sustained snap-through effect 

caused by the non-conservative aerodynamic load. Note that preserving the symmetric configuration during the snap-

through motion would typically require a significant compression of the panel surface. As a result, any path through the 

least potential barrier must involve certain modal transitions avoiding significant tension-compression deformations that 

requires multimodal considerations. On one hand, this essentially complicates the analysis by increasing the problem 

dimension. However, on the other hand, increasing the dimension reveals a simple enough analytical estimate for the 

generating trajectory due to the asymptotic of a perfectly flexible panel. This represents a core of the approach, which 

assumes a global linearization near the manifold of a perfectly flexible panel [5, 6].  

 

Technical details  
Let us consider the elastic panel in a gas flow as schematically shown in Fig.1. The problem is reduced to the two-

dimensional provided that the panel is subjected to a cylindrical bending. The panel thickness h is small compared to the 

amplitude of initial imperfection α, which itself is small compared to the span of the panel l. The outer surface of the 

panel interacts with the gas flow whose unperturbed velocity U is directed along the x-axis as shown in Fig.1.  

 
 

Figure 1: Aeroelastic model of a shallow panel in gas flow under the ‘external’ 
ep  and ‘internal’ 

ip  pressure loads. 

The Lagrangian function of the panel is obtained based on the assumptions [2] as 
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where e[w] is the longitudinal strain, V[w] is the potential energy of elastic deformations, and 
0 0( )w w x  is the shape of 

initial imperfection. Also, the variation of work done by the static pressure drop and nonconservative aerodynamic loads 

is given by 
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where the aerodynamic load corresponds to a linearized equation of the so-called piston theory; see an overview in [4].  

The manifold of zero-strain configurations is defined as  

 { : [ ] 0}fM w e w    (4) 

Then the linearization of the differential equation of motion near the manifold (4) is conducted with a continual version 

of transformation [5, 6] in the form  
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where, 
w  is the so-called variational derivative, which is taken at the arbitrary “point” 

fw M , and the symbol ||…|| 

denotes the Euclidian distance in the functional space of the panel configurations, therefore n (5) is a unit vector, which 

is always perpendicular to the manifold.  

 

Two-mode illustration  
Transformation (5) admits a clear visualization (Fig.2) after the following two-mode approximation of the panel’ shape 
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Note that expansion (6) provides an exact discretization of the corresponding free panel. However, it becomes just an 

approximation due to the presence of first derivative /w x   in the loading function. 

 

 
(a) 

 
(b) 

 
Figure 2: a) Two-mode snap-through trajectory around the potential hill of tension-compression deformations in the neighborhood of 

zero-strain manifold (4) 
fM , and b) the local normal coordinate ζ near an arbitrary point ( )y   of the manifold

fM .   

 

Fig. 2a shows a typical shape of the potential energy 
1 2( , )V V q q  with a sample trajectory of a free panel, which is 

averagely resembles the shape of elliptic zero-strain curve shown in Fig2b, including its generalized coordinate θ 

describing the tangential motion, and the coordinate ζ describing the fast normal component associated with tension-

compression.  

 

Result  
Fig.2b justifies the averaging procedure with respect to the fast normal motion component compared to the slow tangential 

motion. This finally gives an asymptotic one-degree-of-freedom effectively conservative system for the tangential motion  
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Analyzing equation 0/effV    gives the critical number Q above which this equation has no real roots:  
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If 
*Q Q  then system (7) has no equilibrium points and as a result will continue to rotate around the ellipse.   

Conclusion 

It is shown that a strong enough airflow can result in global dynamic trajectories near such manifolds associated with 

two-way snap through between the original and inverted positions of the panel. The effective tangential to the manifold 

forces created by the airflow, dissipation, static pressure drop, and structural elasticity adequately determine conditions 

for qualitatively different dynamic regimes. In particular, it is shown that a strong enough airflow can result in global 

dynamic trajectories near such manifolds associated with a two-way snap through between the original and inverted 

positions of the panel. It must be noted that the developed approach is applicable to other problems with different types 

of loading as well as analyses of free vibrations accompanied by large amplitudes with or without snap through events. 

References 

 
[1] Dowell H. (2014) A Modern Course in Aeroelasticity: Solid Mechanics and Its Applications. Springer International Publishing. 

[2] Kauderer H. (1958) Nichtlineare Mechanik. Berlin, Springer 

[3] Bolotin V., Grishko A., Kounadis A., Gantes C., Roberts J. (1998) Influence of Initial Conditions on the Postcritical Behavior of a Nonlinear Aeroelastic 
System. Nonlinear Dynamics 15, 63-81. 

[4] Amabili M. (2008) Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press. 
[5] Pilipchuk V. (1986) Method of Investigating Nonlinear Dynamics Problems of Rectangular Plates with Initial Imperfections. Soviet Appl. Mech. 22, 162-

168. 

[6] Nagaev R. F., Pilipchuk V.N. (1989) Nonlinear Dynamics of a Conservative System that Degenerates to a System with a Singular Set. PMM 53(2), 190-
195. 

1q

2q

0

n

P





fM

y

1

1/ 2

s


