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Reorientation of a rigid body by means of an auxiliary mass
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Summary. Possible control of the space orientation for a rigid body by means of an auxiliary movable point mass is considered. The
motion of the point mass is proposed that provides the prescribed change of the body orientation.

Introduction

Control of the space orientation of a rigid body can be implemented by means of an auxiliary internal mass that is equipped
with an actuator and can move relative to the body. Two-dimensional motions of such systems in the absence of external
forces are analyzed in [1, 2, 3] where time-optimal controls are obtained. Three-dimensional motions are considered in
[4]. In the paper, a simple control is proposed which provides , in the absence of external forces, the prescribed change of
the rigid body orientation by means of an internal movable mass.

Basic equation

We consider a mechanical system consisting of a rigid body P of mass M and a particle Q of mass m (Fig. 1). Denote by
C the center of mass of body P and by O the center of mass of system P+Q. Suppose that external forces are negligible
and system P+Q is at rest at the initial time moment t = 0. Then its center of mass O is at rest for all t, whereas the
momentum of system P+Q and its angular momentum stay constant and equal to zero. The following equation is derived
from these conservation laws [1, 3, 4]:

J · ω + µMr× (ω × r + v) = 0, µ = m/(M +m), (1)

where J is the tensor of inertia of body P relative to its center of mass C, ω is the angular velocity of body P, r = CQ is
the position vector of point mass Q relative to C, and v is the velocity of point Q relative to body P.

Reorientation

Let us introduce the Cartesian coordinate system Cx1x2x3 connected with body P, its axes Cxi being principal central
axes of inertia of body P, i = 1, 2, 3. Suppose that body P should be transferred from its initial state of rest to the
prescribed terminal state of rest by means of an auxiliary particle Q. We assume that the initial and terminal positions of
particle Q coincide with the center of mass C of body P. Hence, the required motion is the change of the orientation of
body P.
This motion can be implemented by means of three successive plane turns of body P about its three principal central axes
of inertia Cxi, i = 1, 2, 3. For the rotation about axis Cxi, body P must turn by a given angle ∆ϕi while the movable
mass Q must start and finish its motion at point C. Both body P and particle Q should be at rest at the beginning and the
end of this motion. Therefore, to design the required three-dimensional re-orientation, it is sufficient to construct such

Figure 1: Mechanical system
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plane motion of particle Q, with r = v = 0 at the beginning and the end of motion, that provides the required rotation of
body P.

Plane motion

Without loss of generality, let us consider rotation of body P about axis Ox3. Point Q will move in plane Cx1x2, its
trajectory begins and ends at point C. Time-optimal trajectories of point Q found in [1, 3] for small µ, are circular arcs.
Following this example, we will seek the trajectory of point Q as a circle with radius R passing through point C. Its center
S can be chosen arbitrarily in plane Cx1x2.
Denote by I the moment of inertia of body P about axis Cx3 and by ϕ the angle of rotation of the body about this axis.
Then the vectorial equation (1) is reduced to the following equation

ϕ̇ = − µMR2(1− cosψ)

I + 2µMR2(1− cosψ)
ψ̇, (2)

where ψ is the angle between radii SC and SQ; this angle defines the position of point Q along its circular trajectory. By
integrating equation (2), we obtain

ϕ(t) =
1

a
Arctan(a tan

ψ

2
)− ψ

2
, (3)

where

a = (1 + 4µMR2I−1)1/2. (4)

According to equation (3), the angle ϕ of rotation of body P about axis Cx3 depends only on angle ψ, i.e., on the position
of particle Q on its circular trajectory. When point mass Q makes the full rotation along its trajectory (ψ = 2π), body P
turns by angle

∆ϕ = π(a−1 − 1), −π < ∆ϕ < 0.

To turn body P by an arbitrary angle, mass Q can make several (n) revolutions along its circular trajectory. Hence, the
total angle of rotation ∆ϕ of body P can be estimated as follows

|∆ϕ| = πn(a− 1)/a. (5)

Using formulas (4) and (5), we obtain the expression for the radius R of the circular trajectory of point mass Q:

R =
[Iα(1− α/2)]1/2

(2µM)1/2(1− α)
, α =

|∆ϕ|
πn

. (6)

To turn body P about axis Cx3 by angle ∆ϕ, particle Q should move in plane Cx1x2 along a circular trajectory of radius
R given by (6). The center of the trajectory and the time history of motion ψ(t) can be arbitrary.
This trajectory must pass through the center of mass C of body P, and the velocity of particle Q at point C must be zero.
To decrease the domain of motion for particle Q, we can, according to equation (6), increase the number of revolutions n.
The circular motions of particle Q relative to body P can be accomplished by means of rotating wheels.

Conclusions

Possible motions of an auxiliary point mass relative to a rigid body are described which provide an arbitrary prescribed
reorientation of the body in space in the absence of external forces.
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