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Summary. This abstract proposes an approach for parametric system identification for a class of continuous-time Lur’e-type systems.
To overcome the computational drawbacks of numerical forward integration, the Mixed-Time-Frequency (MTF) algorithm is used to
compute model responses in a fast way. These model responses are required to evaluate the cost function, which quantifies the mismatch
between the measured and simulated steady-state output response. Furthermore, we show that the gradient of the cost function with
respect to the model parameters can also be computed using the MTF algorithm. Hence, the MTF algorithm facilitates efficient use of
global and local optimization methods to minimize the cost function, which yields the identified parameter set. Finally, by enforcing
the identified model to be inside the set of convergent models, we certify a stability property of the identified model, which allows for
safe generalization to other inputs than those used to train the model. The proposed approach is successfully applied in mechanical
ventilation, where parameters of a first-principle model are identified. This case study highlights the benefits of the proposed approach.

Identification Problem

A practically relevant class of nonlinear systems is the class of Lur’e-type systems, see Figure 1. In such systems, the linear
time-invariant (LTI) dynamics are captured in an LTI block and all the nonlinearities are captured in a static nonlinear
block placed in the feedback loop. We consider the problem of parametric identification of so-called continuous-time
convergent Lur’e-type systems. Convergent systems are systems that, for any bounded input, have a unique, globally
asymptotically stable (GAS) steady-state solution that is bounded on the whole time axis [3]. For the class of Lur’e-type
system, sufficient conditions for exponential convergence exist [S]. Our goal is to find parameters of the Lur’e type system
that ensures the closest fit between the steady-state model response and the measured steady-state output response, while
also ensuring that the identified model is convergent. We consider the case where both the input w(t) and output z(t) are
scalar. The feedback signals y(t) and u(t) are considered nor measured.

A property of convergent systems is that for T-periodic input w(t), the steady-state output z(t) is also T-periodic, fa-
cilitating the use of only steady-state data for the purpose of identification. The considered cost function, measuring the
squared identification error, is given by
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with 6 being the model parameter vector, parameterizing the LTI system matrices and the nonlinearity in Figure 1, IV
the number of samples in one period, ¢;, the sampling times (uniformly spaced) and zsimuiated(t, €)s Zmeasured(t), the
simulated and measured steady-state response, respectively. Next, we define © as the set of parameters § which renders
the considered Lur’e-type model convergent. The objective is to minimize J(6) in (1) while ensuring convergence by
guaranteeing § € ©. We consider the state dimension to be known and the model parametrization to be given by the user.
The identification problem can now be formulated as follows:

0 = arg min J(6). (2)

Cost Function Minimization

The constrained optimization problem (2) is solved in a two-step fashion. In the first step, initial parameter estimates are
obtained. If the model is derived from first-principle modeling, then the user could provide initial parameter estimates
based on physical insights. Otherwise, the best linear approximation [4] can be used, which yields a linear initial model
in a fast way. Alternatively, any global parameter search algorithm [1] can be used, which results in a full nonlinear initial
model, however, at the expense of computational time.

In the second step, a gradient-based search is used to optimize all parameters of the full nonlinear model. In order
to evaluate the cost function (1), computation of the model response is required. Doing this using numerical forward
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Figure 1: Considered Lur’e-type system. Figure 2: Experimental setup of mechanical ventilation.
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Figure 3: Realistic breathing pattern. Figure 4: Measured response and remaining errors as defined in (1).

integration is a computationally expensive task. Therefore, for the class of convergent Lur’e-type systems, [3] developed
the so-called Mixed-Time-Frequency (MTF) algorithm. This algorithm computes iteratively the response of the LTI block
in frequency-domain and the response of the static nonlinearity in time-domain, which are both computationally efficient
steps. It can be shown that for convergent Lur’e-type systems, this iterative computational approach is guaranteed to
converge, ensuring the accurate and fast computation of the ‘true’ steady-state model response.

Besides the steady-state model response, also the gradient of the cost function (1) with respect to the model parameters is
required in any gradient-based optimization approach to minimize the cost function in (1). One of our main contributions
of this work is to show that this gradient can be obtained by simulation of a parameter sensitivity system, which is again
a convergent Lur’e-type system. Hence, again the MTF algorithm can be used as a means of fast and accurate computa-
tion of the output response of this sensitivity system to obtain the gradient of the cost function. Using well-established
optimization routines [2], the constrained optimization problem (2) can then be solved in a fast way by exploiting the
computational benefits of the MTF algorithm.

Experimental Case Study in Mechanical Ventilation

The proposed approach is applied to find the parameters of a first-principles model of the mechanical ventilation setup
schematically depicted in Figure 2. Mechanical ventilation is used in intensive care units to assist or stimulate respiration
of patients who are unable to breathe on their own. The blower realizes the pressure ppiower by an internal control-loop
which tracks the target breathing cycle pyq,qet, both depicted in Figure 3. The measured pressure pyjower 1S considered
as the input of the system. Air flows through a hose into the lungs of the patient, where at the patient-side of the hose the
airway pressure Dgirway 1S measured and considered as the output of the system. Also an intentional leakage component
with known characteristics is present in order to refresh the air to the patient. Using first-principles modeling, a Lur’e-
type model characterized by five parameters can be derived. The static nonlinearity in the model stems from the nonlinear
pressure-flow characteristic of the hose, being characterized by a linear and quadratic resistance. Rather than using humans
in these experiments, the ASL5000 breathing simulator is used, which simulates the lung behavior of patients, being
characterized by a resistance and compliance parameter. The fifth parameter is the resistance of the leakage component,
which is known by means of calibration. The case where the patient is fully sedated is considered, which implies no
breathing activity from the patient.

A one minute experiment is performed where 15 periods of the 4 seconds periodic input depicted in Figure 3 are applied
to the system. The average of the last 12 periods of pyiower and Pairway are used as steady-state input and output data,
respectively, for the purpose of identification. Such a short experiment time is of crucial importance in this application
as time is extremely costly in such medical settings. Parameters of an ‘average’ patient model are used to initialize a
gradient-based exterior-point optimization algorithm to minimize the cost function in (1).

The measured steady-state output pg;rway 1S depicted in Figure 4, together with the error obtained by the initial model
€rnitial (this is a model with average patient-hose parameters) and the model obtained after the gradient-based search
€Final- FOr comparison, also the error of an identified linear model (using subspace techniques) is plotted in Figure 4. In
this figure, the benefits of identifying a nonlinear model are clearly visible as it yields a much smaller error than the initial
and linear model. This is also confirmed by the yielded cost (1), which is 2.55 for the initial model, 2.40 for the linear
model and 0.17 for the final model. Furthermore, as we performed parametric system identification, the parameters of
the model represent physical quantities that reveal important medical information on the patient and medical ventilation
equipment, which are useful for medical personnel. To illustrate the computationally efficiency, a total of 1530 model
responses were computed in only 13 seconds in the gradient-based search. The obtained model is guaranteed to exhibit the
convergence property, which is highly instrumental for prediction purposes in controller design in mechanical ventilation.
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