
ENOC 2020, July 5-10, 2020, Lyon, France

Destabilizing effect of back electromotive force along the cyclic coordinate in case of a
digitally controlled Furuta pendulum

Mate Benjamin Vizi and Gabor Stepan
Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest,

Hungary

Summary. Two usually neglected effects are considered in the mechanical model of the Furuta pendulum: the additional viscous
damping caused by back electromotive force and the sampling delay caused by the digital control. These effects have relevant influence
on the choice of the control algorithm and on the stability properties of the upward position of Furuta pendulum.

Introduction

The Furuta pendulum [1] is a relatively simple two degree of freedom mechanical device (see the left panel of Figure 1),
which has became a commonly used equipment for demonstrating various control algorithms applied on a highly nonlinear
dynamical system. The arm is usually driven by an electric DC motor and the pendulum hangs freely, so this system is
underactuated. The contol signal is the input voltage of the motor, and its calculation by means of a digital controller
requires the consideration of both the sampling delay and the additional viscous damping caused by the back electromotive
force appearing in the real system. This work considers these two often neglected effects; the consequences on stability
and possible control algorithms are discussed.

Governing equations

The nonlinear equations of motion of the Furuta pendulum can be obtained by means of the Lagrangian equations of the
second kind in the form of:

(Ja + Jp sin2θ) Üϕ − (m2rl cos θ) Üθ + 2Jp (sin θ cos θ) Ûθ Ûϕ + (m2rl sin θ) Ûθ2 = M , (1)

Jp Üθ − (m2rl cos θ) Üϕ − Jp (sin θ cos θ) Ûϕ2 − m2gl sin θ = 0 , (2)

where θ is the pendulum angle, ϕ is the arm angle, Jp = m2l2 + J2 and Ja = m1(r/2)2 +m2r2 + J1 are corresponding mass
moments of inertia; the other mechanical parameters are shown in Figure 1. The control torque M applied on the arm is
usually provided by a DC motor, for which the output torque can be determined based on the governing equations of the
electric motor as a function of the input voltage Uin and the motor angular speed which is proportional to the arm angular
velocity Ûϕ of the Furuta pendulum:

M = NUin − K Ûϕ. (3)

The constants N and K are the motor parameters related to the input voltage and back electromotive force, respectively.
Note that substituting this into the equation of motion, the back electromotive force is analogous to a viscous damping
force applied at the arm. Considering that the input voltage is determined by a digital microcontroller, sampling delay
appears in the feedback loop in the following form

Uin(t) = −P1θ(tj−1) − D1 Ûθ(tj−1) + D2 Ûϕ(tj−1), t ∈ [tj, tj+1), (4)

where P1,D1,D2 are the control gains; tj = jτ, j ∈ Z is the j th sampling instant, and τ is the sampling time, which is
assumed to be constant. Alternatively, if the angular velocity Ûϕ cannot be measured, then the application of an integral
term can be considered in the feedback loop:

Uin(t) = −P1θ(tj−1) − D1 Ûθ(tj−1) − I1τ

j−1∑
i=0

θ(ti), t ∈ [tj, tj+1), (5)

In what follows, we discuss the case of Equation (4).

Results

The sampling delay causes stability problems in the control systems as shown in [3, 4]. Based on the linearized system
model, the critical sampling time can be calculated; this is the maximal sampling time of the digital control for which
the pendulum can be stabilized with appropriate control gains. The minimal value of D2,min > 0 control gain can also
determined, which means the simplest P1D1 controller (with D2 = 0) cannot stabilize the system. In other words, the
upward pendulum position θ = 0 is unstable for any P1,D1 control gains without feedback of the arm angular velocity
(or the integral of the pendulum angle, see (5)). This instability is caused by the back electromotive force of the DC
motor, which is similar to the viscous damping along the cyclic coordinate, while the inverted pendulum is underactuated
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Figure 1: The Furuta pendulum (left) and the four dimensional stability chart of the Furuta pendulumwhich
takes into account the back electromotive force of the DC motor and the sampling delay of the feedback
loop (right).

due to the control force applied along the cyclic coordinate only. In case of standard positioning tasks of fully actuated
systems, the back electromotive force does not cause such kind of instability, moreover, it is often considered useful
because of its extra damping effect. In case of the underactuated control task like the Furuta pendulum, the presence of
back electromotive force makes the system inherently unstable in case of classical PD control, this is the reason why an
improved control law is needed to achieve stable system behavior: either the feedback of the arm (motor) angular velocity
Ûϕ with a D2 > D2,min control gain is needed, or an integral gain has to be used with respect to the pendulum angle θ.
The results of the corresponding calculations are represented by stability charts in the right panel of Figure 1, in the space
of four parameters: the sampling time τ and the three control gains P1,D1,D2. It can be seen, that the size of the stable
parameter region becomes smaller with increasing sampling time τ and it completely vanishes at the identified critical
values. The effect of the parameter D2 is similar: the stable regions disappear above maximal and below minimal gain
values. The stability charts are similar if the integral gain I1 is applied as shown in Equation (5).

Conclusions

It was found that the simple P1D1 control law applied on the pendulum angle θ and angular speed Ûθ is insufficient in the
presence of cyclic viscous damping or back electromotive force; an improved control algorithm is necessary, by extending
the P1D1 controller with an extra derivative term D2 applied on the angular speed Ûϕ or with an extra integral term I1 applied
on the pendulum angular position θ. The critical sampling times of the digital control loops can also be determined, which
are identified also by laboratory experiments on the Furuta pendulum.
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