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Summary. This paper deals with the modelling and simulation of parametrically excited vibrations in a test rig with a drive belt. The 

structure is modelled as a dynamical system with time-periodic coefficients and four degrees of freedom (two rotational and two 

translational degrees of freedom). Stiffness parameters are obtained from experimental load-displacement diagrams, and mass parameters 

are calculated by hand or by CAD software. The system’s proportional damping parameters are derived from measured damping ratios of 

the structure. Finally, the parametrically excited vibrations are studied numerically by using fourth-order Runge-Kutta method. The 

simulation results are considered to be very valuable for the upcoming measurements and the analysis of experimental data. 

Introduction 

Machines with drive belts often exhibit parametrically excited vibrations [1]. The test rig in figure 1 uses a V-ripped L-

profile drive belt. For the most part, the drive belt consists of vulcanized rubber material. In addition to that, the drive 

belt contains a load-carrying tension member (high strength fibres) for transmitting the longitudinal forces. This type of 

drive belt can be found in many different machines, e.g. sheet-fed offset printing machines. Recent work of one of the 

authors showed, that the drive belt can be modelled as a spring with time-periodic stiffness. This parametric stiffness 

excitation leads to numerical results that match very well with measured vibrations [2]. 

 

 
 

 
 

Parameters: 

Θ1 = 1.64 ∙ 10−3 kg m², Θ2 = 2.21 ∙ 10−2 kg m², 

𝑚3 = 𝑚4 = 1.25 kg, 𝑑1 = 0.104 m, 𝑑2 = 0.164 m, 

𝑒 = 0.005 m, 𝑘3 = 𝑘4 = 𝑘5 = 492 N/m, 

𝛼 = 2.45 s−1, 𝛽 = 8.37 ∙ 10−4 s 
 

Drive belt’s geometry and stiffness: 

𝐿 = 0.991 m, ℎ = 0.007 m, 𝑏 = 0.038 m, 

𝑘1 = 𝑘2 = 6.78 ⋅ 105 N/m ∙ [1 + 0.175 ∙ cos (
𝑞̇1𝜋𝑑1𝑡

𝐿
)] 

Figure 1 (left): Photograph of the test rig. Figure 2 (right): Sketch and parameters of the dynamical system. 

 

Dynamical system 

Figure 2 displays a sketch of the dynamical system. The rotational degrees of freedom of the two belt pulleys are 

denoted by q1 and q2. The two masses m3 and m4 have translational degrees of freedom (q3 and q4). An asynchronous 

motor fed from a frequency converter delivers the drive torque M1 to the small belt pulley. According to [3], the drive 

belt’s stiffness can be different for tight span (k1) and slack span (k2). k3, k4 and k5 represent helical compression springs. 
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Applying Newton’s Second Law yields the following equations of motion: 

 Θ1𝑞̈1 + (𝑘1 + 𝑘2)
𝑑1

2

4
𝑞1 − (𝑘1 + 𝑘2)

𝑑1𝑑2

4
𝑞2 − 𝑀1 = 0 (1) 

 Θ2𝑞̈2 + (𝑘1 + 𝑘2)
𝑑2

2

4
𝑞2 − (𝑘1 + 𝑘2)

𝑑1𝑑2

4
𝑞1 + 𝑘3𝑒2 sin(𝑞2) cos(𝑞2) − 𝑘3𝑒 cos(𝑞2)𝑞3 = 0 (2) 

 𝑚3𝑞̈3 + (𝑘3 + 𝑘4)𝑞3 − 𝑘4𝑞4 − 𝑘3𝑒 sin(𝑞2) = 0 (3) 

 𝑚4𝑞̈4 + (𝑘4 + 𝑘5)𝑞4 − 𝑘4𝑞3 = 0 (4) 

Kammer experimentally acquired the linear load-displacement diagram for the helical compression springs used in the 

test rig [4]. This leads to k3 = k4 = k5 = 492 N/m. Furthermore, the authors’ colleagues Pyttel and Wiesner carried out a 

tensile test of the drive belt [5]. The measured load-displacement relationship is nonlinear, but linearizing the pro-

gressive (hardening) curve at the operating point (belt tension: 278 N) leads to: k = 6.78105 N/m. In accordance with 

recent work of one of the authors, the drive belt is modelled as a spring with time-periodic stiffness as follows [2]. 

 𝑘1 = 𝑘2 = 𝑘 ∙ [1 + 𝜀 ∙ cos(𝜔𝑃𝐸𝑡)] (5) 

Neglecting slip, the parametric excitation frequency 𝜔𝑃𝐸 relates to the drive belt’s length L as follows: 

 𝜔𝑃𝐸 =
𝑞̇1𝜋𝑑1

𝐿
 (6) 

For 𝑞̇1 = 𝑞̇2 = 0 (non-rotating belt pulleys) Kammer measured free vibrations of m3 and m4 and identified eigen-

frequencies (20 rad/s, 34 rad/s) and corresponding damping ratios (0.07, 0.05) [4]. Consistent with [2], proportional 

damping (𝐷 = 𝛼𝑀 + 𝛽𝐾) is assumed, and  and  are chosen to yield the system’s above-mentioned damping ratios. 

Simulation of parametrically excited vibrations 

Since the drive torque M1 hasn’t been measured yet, the dynamical system is simulated for the scenario 𝑞̇1 = const. 
Figure 3 shows simulation results for 𝜀 = 0.175, which is in line with [2]. Maximum amplitudes in figure 3 occur at 

order  0.33 =  𝜋𝑑1/𝐿 (first drive belt order). Simulation results will be compared with impending measurements. 
 

 
 

Figure 3: Simulated parametrically excited vibrations 
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