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Summary. Multiplicative road models generate stationary vehicle excitations which are distributed similar to Gaussian processes but 

bounded in any given range by means of suitable nonlinearities. For increasing multiplicative noise, the nonlinear process becomes 

uniformly distributed and change to sinusoidal distributions for growing noise intensities. Both, the multiplicative and sinusoidal roads, are 

applied to excite quarter car models with one degree of freedom in order to work out the dynamical behavior and stability of vehicle road 

systems and to discuss them in comparison with classical ground excitations by means of Gaussian models or harmonic wave roads.   

 

1. Introduction to vehicle road dynamics 

To introduce basics of vehicle road dynamics, Figure 1 shows the model of a quarter vehicle model [1-6] rolling with 

constant speed   on a wavy road with level   and frequency     measurable by means of wave length        . 

The wavy road defined in Eq. (2), initiates vertical vehicle vibrations   described by the equation (1) of motion  

                 
                                                                     

                                                                                                    
where   is the natural frequency of the vehicle and   denotes its damping, given by   

       and             
respectively. In Eq. (2),   is the road amplitude and s the longitudinal coordinate      when the vehicle drives with 

constant speed    In the stationary case, Eqs (1) and (2) lead to the amplitude ratio     of response and excitation 

                                                                       
        

      
 
       

                                                                      

In Figure 2, the amplitude ratio     is plotted versus the related frequency speed         for the two damping 

values        and      . Both curves are drawn in red color. They start in     with the ratio       and end in 

    with      . They become maximal near the resonance for      In Figure 2,   is the image variable of the 

vehicle velocity in the range       with two different scales:     in the left half and         in the right 

one. This scaling [6] has the advantage that the amplitude ratio can be drawn for all velocities        
 

                           
 
   Figure 1:  Quarter car model rolling with constant speed                         Figure. 2: Standard deviation (blue) and amplitude (red)                             

v on sinusoidal (orange) or random (cyan) wave roads                              ratio of response and excitation versus vehicle speed  

 

Stochastic road models [7-12] are assumed to be normally distributed with zero mean and standard deviation     They 

are modeled e.g. by means of the linear first order system under white noise  

                                         
                                               

where     is the vehicle velocity and   denotes the intensity of noise realized by the Wiener increment      The 

application of the noise spectrum         and the Fourier transforms leads to the road spectrum  

      
   

        
                          

  
 

  
         

  

  

  

  

                    

The road spectrum is integrated over all frequencies   to obtain the variance   
 , noted in Eq. (5). The same method can be 

applied to Eq. (1) to obtain the vehicle spectrum       which is integrated in order to get the associated standard deviation ratio 
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In Eq. (6), the time frequency     represents the corner frequency of the road spectrum       in Eq. (5). Now, it takes 

the role of the middle frequency of the wavy road surface in Eq. (2). In Figure 2, the standard deviation ratio of vehicle 

response and road excitation, calculated in Eq. (6), is plotted for the same two damping values, as before. Therewith, the 

result obtained in Eq. (6) can be directly compared with the amplitude ratio in Eq. (3). Obviously, resonance 

magnifications are much stronger in the harmonic case in comparison with random roads when the vehicle is driving 

near the resonance velocity      Outside of the resonant speed range, however, the magnification is inverted, 

completely   In the over-critical speed range, the amplification of the standard deviation ratio is more than double as big 

in comparison with the harmonic case when the vehicle is driving e.g. with       

 

2. Extensions to multiplicative road models 

 

The linear first order road model, determined by the spectrum (5), is extended to multiplicative road models of second order 

which are introduced by means of the two non-linear stochastic differential (Itô) equations [13, 14]                    

                                                
            

         
                             

                                                 
 
                           

where     denotes the vehicle velocity and   gives the intensity of white noise       . The parameter   is the middle 

road frequency and   determines the bandwidth of the two processes    and    of the road level and slope, respectively. 

The non-linear process    introduces process limitations by the values    and    which are freely selectable. For 

infinitely growing values          Eqn. (7) and (8) become linear and their stationary solutions are normally 

distributed. For finite values               the stationary processes are limited by the ellipse        
        

    
In the symmetric case that           the limitation is a circle. When the stationary solutions take vanishing values, 

multiplicative noise becomes additive with      and the system has the strongest possible driving. When the solutions 

are on the ellipse, noise is excluded by      and the system possesses the strongest possible decay behavior.      

 

                                                

   Figure 3:  Two-dimensional distribution of level and slope                       Figure. 4: Singular two-dimensional density of road level 

   with the limitation           and the exponent                           and slope for the same limitations and exponent        

        

The density distribution          of the road processes is determined by means of the Fokker-Planck equation [15] 

  

  
 

 

  
             

 

  
       

 

 
   

  

   
     

 

  
 
 

  
 

  
 
 

                    

In the stationary case  the density        is independent on time and satisfies the stationary Fokker-Planck equation  

        
  

  
   

  

  
  

  

  
 

  

  

  

   
     

 

  
 
 

  
 

  

 
 

                                    

Note that the velocity   is dropped out in Eq. (10) because of        ; i.e. the statistical configuration of the road is 

independent on velocity and can be applied for all speeds. In the symmetric case          .Eq. (10) is solved by     

                  
         

   
                        

                                        

where   is the integration constant of normalization. The two-dimensional density, noted in Eq. (11), can be integrated 

for       This coincides with the stability condition     of the linear oscillator for          For      the 

density        in Eq. (11) is uniformly distributed. For       it is parabolic. For      the density        possesses 

a forth order shape as shown in Figure 3 for the limitation          In this case, the two-dimensional density is zero on 
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the limitation circle with a vanishing gradient. The two-dimensional density in Eq. (11) becomes singular for       

 . In Figure 4, the density is plotted e.g. for          In this case,        coincides with the stationary density of the sinusoidal 

road surface, noted in Eq. (2).   

3. Vehicle dynamics with multiplicative road models  

The application of Itô’s calculus to the multiplicative road model of Eqn. (7) and (8), leads to the three increments   

    
                     

            
         

                                        

             
           

                                                

    
            

            
                                        

in which the expectation operator can be applied to obtain the associated moment’s equations. In the stationary case, the first 

equation and the second one lead to           and     
       

  , respectively. Taking into account that          is 
vanishing and     

   follows from Eq. (7), the third equation gives the stationary square mean  

    
       

   
 

   
      

         
                                                          

The result in Eq. (12) coincides with the square means of the linear road model under white noise obtained for the limiting 

case         . Note that the above square mean equations are linear although the state equations (7) and (8) are non-

linear. Both is possible because of the specially adapted non-linearity in Eq. (7). 

 

                        
  Figure 5: Standard deviation ratio of response and excitation               Figure.6: Standard deviation of the vertical vibration velocity  

      for the road bandwidth     (Harm.) and     (Stoch.)                versus the related vehicle speed for the damping         

 

The multiplicative road model is applied to the quarter vehicle, shown in Figure 1. The introduction of the coordinate 

       of the vertical vibration velocity into equation (1) of motion leads to the associated first order system  

                                                                             

where the time derivative     is given by the increment            in Eq. (7). The stationary co-variances of all 

excitation processes       times all response processes       are calculable by means of the matrix equation  

 

                     
                   
 
 

 
 

   
 

          
       

  

       

       
       

       

   

 
    

  
 

       
  

                                      

where the square means of the road excitation are already calculated in Eq. (12). Note that the co-variance matrix in Eq. 

(14) is skew-symmetric. Hence, the co-variance matrix is positive definite. Its determinant   is calculated to 

                                                                                           

Subsequently, the stationary moment’s equations of the vehicle processes are set up and solved, as follows:  

    
      

                                                               

    
      

                                                                       

In Figure 5 and 6, the square roots of the square mean ratios in Eq. (16) and (17) are plotted versus the related vehicle 

speed for the damping         and five different bandwidth values   of the road excitation. For vanishing bandwidth 

     the result in Eqn.(16) coincide with the amplitude ratio (3) of a vehicle rolling on wavy roads with harmonic 

contour surface. The same holds for Eq. (17). For growing bandwidth    the resonance peaks in both amplitude-velocity 
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diagrams are reduced in comparison with the harmonic case.  However, the standard deviations (blue) become bigger 

than the amplitude (red) ratios when the vehicle is driving sufficiently outside the resonance velocity. For higher vehicle 

speeds e.g.      the magnification by stochastic excitations becomes even stronger in comparison with the harmonic 

case. For very slow and very high speeds, the standard deviation ratios are independent on the bandwidth of the road 

frequencies and coincide with the results of harmonic road excitation. For the special case of white noise with infinitely 

increasing bandwidth, Eq. (16) gives          for all vehicle speeds      and          for      

4. Non-stationary models of vehicle speed fluctuations    

In Figure 1, the wavy road is modeled by the sinusoidal form     . This model is extended to its stochastic version  

                                                                                                       

where    is the time frequency given by the road frequency   times the vehicle velocity   which is perturbed by white 

noise    
  of intensity  , when speed fluctuations through driving moment and air resistance are measurable and taken 

into account in a purely kinematic modeling. The application of Itô’s calculus to the road process    leads to  

                                                                                                                                 

The stochastic road model (18a,b) is applied to Eq. (1) of the vehicle road system in the slightly modified form  

              
                

                                                                   

where   is the amplitude of the road excitation. Note that sinusoidal excitations like            are non-stationary 

with the mean value          sin   which converge to the stationary zero value with linearly growing time    In 

order to eliminate this  non-stationary behavior, amplitudes              are introduced into Eq. (19) by means of Eqn. 

(20a) and (21a). The application of Itô’s calculus leads to the transformed equations, as follows: 

                                                                                     

                                                                        (21a,b)  

                                                                                 

                                                                              

Numerical integrations of the transformed equations (20b), (21b), (22) and (23) are performed by means of the 

Maruyana scheme with the time step size              for         samples. The Wiener increments [16] are 

approximated by           where the numbers    are normally distributed with zero mean  and unit mean square 

    
      Associated parameters are chosen by                          In Figure 7, simulation results of 

the displacement means       and        as well as the density distributions               are plotted versus the 

related speed       .The density      is marked by blue colour and      is green. Both densities show the resonance 

effect when the vehicle drives with velocity    . For further growing speed, the densities of both displacement processes 

are concentrated around the zero axes. This represents the self-centering effect, already known in rotor dynamics. For 

     the density distributions      and      degenerate to delta needles around the means values       and      .  
 

                         
          Figure.7: Mean amplitudes and densities of     and                   Figure 8: Resonance diagram for growing noise intensity: 

          versus frequency speed related to natural car frequency             the resonance is first increased and then decreases again. 
 

The application of the expectation operator      to Eqn. (20b), (21b), (22) and (23) leads to the matrix equation   
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by which the stationary mean values of all amplitude processes are calculable. In Figure 8, the resultant mean amplitude 

                  
    of both displacement means                 is plotted versus the related velocity for 

vanishing noise (blue) and for growing noise intensity (red). The latter leads to stable mean amplitude with resonance 

magnifications up to a critical noise intensity where the resonance peak is reduced (green), again. In this case, the mean 

amplitude mean becomes unstable. This stability behavior follows from the diagonal term               
    in 

Eq. (24) which is negative for weak noise intensities and become positive for growing noise. More details are obtained 

when the almost sure stability [17] of the amplitudes in Eqs. (20b), (21b). (22) and (23) is investigated. Stability in 

mean is investigated by means of the eigen-values [17] of the mean amplitudes matrix in Eq. (24).  

5. Resonance reduction and induction by means of filtered noise      

It is interesting how the resonance behavior of the amplitude processes is changing when the velocity perturbation by 

white noise    
  in Eq. (18b) is replaced by the more realistic perturbation of filtered noise     , as follows: 

                                                                                     

                                                                                     

The stationary filtered noise in Eq. (25c) is normally distributed with zero mean and mean square   
             The 

application of the amplitude processes (20a) and (21a) to the vehicle equations (25a) and (26) leads to 

                                                                                                      

where the vector                   
   of the four amplitudes are determined by the matrices         as follows: 

                           

    
   

           
           

    
    

        
       

                            

   
    

      
     

      
     

   
     

  

                  
                                                                                                             .  

The vectors    and   , noted above, determine the inhomogeneous part in Eq. (26). Note that in Eq. (26) there is a non-

linear term in form of        with a product of state processes. The product possesses the increment  

                        
                   

                                                                

which couples the system vector      to higher potencies of the perturbation     This coupling effect is approximately 

removed in the stationary moments equations of Eqn. (26, 27) by means of the Gaussian closure, as follows:   

                                                                               
           

                                     

    
                                  

                        
                                              

In Eq. (29a),   denotes the unit matrix. Note that in Eq. (29a) the expectation of the product   
      is approximately 

replaced by the product of both mean values. Numerical evaluations of Eqn. (28a) and (29a) are shown in Figure 9 

where the mean amplitude    is plotted versus the vehicle velocity   for            and the noise intensities 

          (green) and       (blue). For       the green and blue lines coincide with the deterministic case of 

vanishing perturbations. For growing bandwidth of the perturbation, the resonance peak is reduced. The resonance 

reduction becomes stronger for increasing noise intensities   and for increasing low-pass frequency   . This effect is 

physically explainable by the fact that high frequencies are filtered out and only low frequencies are retained in the 

perturbation. However, low velocity frequencies    are not contributing to resonance effects.   

 

                       
       Figure.9: Resonance reduction in the mean amplitudes                   Figure 10: Resonance induction from blue to red line via  

        for growing noise intensity and perturbation bandwidth                growing noise intensity and perturbation bandwidth (green) 
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The resonance reduction is completely inverted when instead of low-pass noise one applies the high-pass perturbation   

       
 
                     

                                                           

where white noise    
  in Eq. (18b) is now replaced by   

  in Eq. (30b). Consequently, perturbations with low 

frequencies are filtered out. High frequency parts are retained. The introduction of Eqn. (30) into Eq. (19) leads to 

                                                                                                    

                                 
 
               

            
 
                       

The application of the amplitude processes (20a) and (21a) to Eqn. (31) and (32) leads to the vector equation  

                                                                                                            

where the vector      contains the four amplitude processes. The matrix   and the vectors    are given by  
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where   and    are already noted in the last section. The non-linear term        in Eq. (33) possesses the increment   

                        
                   

                                                               

in which the system vector      is coupled to higher potencies of the perturbation     This coupling is approximately 

removed by means of the Gaussian closure, noted in Eq. (35b). In the stationary case, the insertion of the Gaussian 

closure condition into Eq. (34) leads to the linear moments equations 

                                                                                   
           

                                     

         
                                                        

                                              

where   is the unit matrix. Numerical evaluations of Eqs. (35a) and (36a) are shown in Figure 10 where the mean 

amplitude    is plotted versus the related vehicle velocity   for       and       The blue line stands for      of  

vanishing noise perturbations. For            and            one obtains the red line overlaid by the green one in 

coincidence with the white noise case shown in Figure 8. For            and          of growing perturbation 

bandwidth, there is a further increasing of the resonance peak. This resonance induction is probably explained by the 

destabilizing effect of harmonic parameter excitations when for       the perturbation frequency coincides with the 

double eigen-frequency of the oscillator. 

6. Lyapunov exponents and rotation numbers in vehicle dynamics 

Vehicle vibrations which are described by rotating coordinates are physically existent if they are almost sure stable or 

asymptotically stable with probability one. In the unstable case, the separation into rotating processes is not possible and 

the vehicle equations must be retransformed back to their original equations in non-rotating coordinates. The stability in 

mean and the almost sure stability [17] of the vehicle vibrations in rotating coordinates is investigated by means of a 

projection on hyper-spheres and application of the multiplicative ergodic theorem of Osceledets [18]. For these purposes, 

Eqn. (20b), (21b), (22) and (23) are reduced with     to the homogenous form and transformed by means of the two-

dimensional system of polar coordinates                      which leads to the stability equations  

                                                                                               

                                             
  

  
                                        

                                                                                

                                           
  

  
                                      

The above equations project the displacements         and the velocities (       on two circles with radii         and  

angles    ,     A second application of polar coordinates by means of Eqs. (37a) and (38a) eliminates the two radii 

        and projects the entire motion on hyper-sphere with one radius    and three angles determined by  

                                                                                                
                                                                                                    
                                                                                                    
                                                                            

where difference and sum angle (       are additionally introduced by means of Eqn. (39a) and (40a). Eq. (37) is 

integrated by means of variable separation and leads to the top Lyapunov exponent    

        
   

 

 
                       

   

 

 
    

 

 

                                       

If the top Lyapunov exponent  is negative, the stationary solutions of Eqn. (20b), (21b), (22) and (23) are asymptotically 

stable with probability one or almost surely stable. For         the solutions are unstable and grow, exponentially.  
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        Fig. 11: Limit cycles of projection angles                       Fig. 12: Transient projection angles and their ending            

        around red centers for under-critical damping                 in singular fix-points for over-critical damping     

According to Eq. (41), the top Lyapunov exponent is determined by the noise intensity, the system damping and the 

time average of the cosine of the stability angle     which is coupled with the difference angle   . Both angles are 

determined by Eqn. (38b) and (39b) which are non-linear, noise-free and decoupled from the sum angle    in Eq.(40b) 

where additive noise is still active. In Figure 11 and 12, Eqn. (38b) and (39b) are numerically evaluated for the under- 

and overcritical damping        and        on the left and right side, respectively. The angle solutions are 

   periodic in    and   periodic with respect to  . For       Figure 11 shows stationary limit cycles of both 

angles (      . They are calculable without any transient time behavior for arbitrary initial values applying an Euler 

scheme e.g. with the scan rate                All limit cycles in Figure 11 are symmetric with respect to   
      Because of this symmetry the time average in Eq. (41) can also be obtained by the four stationary fix-points 

       and         which represent the center of the limit cycles marked by red circles. The insertion of these 

center values into Eq. (41) leads to one top Lyapunov exponent and two rotation numbers, as follows: 

                                                                                         

The rotation numbers are time averages of rotating angle processes, applied to the angles increments     and       They  

are calculated by the stationary values               and              . In Figure 12, Eqn. (38b) and (39b) 

are evaluated for the overcritical damping       where instead of limit cycles transient solutions are obtained. Start-

ing with any initial values, both angles (       move to the stationary fix-points                          The 

insertion of these stationary angle values leads to two Lyapunov exponents and one rotation number 

                                                                                 

where the fix-points solutions are inserted into the ergodic integrals of Lyapunov exponent and rotation number.  

In Figure 13, the rotation numbers are plotted versus the frequency speed     for the natural frequency       and 

three damping values. For      one obtains two straight lines with positive slopes marked by thick red color. For 

       both rotation numbers are drawn in green and coincide in yellow for    . Associated rotation numbers with 

negative slopes are obtained for negative speed frequencies. In Figure 14, the stability map is obtained by plotting the 

related critical noise intensity    
     versus the vehicle damping. With          the stability boundaries are  

   
                                                    , 

   
                                      

In Figure 14, the stability region is marked by green color. Inside the green region, the stationary solutions of Eqn. 

(20b), (21b), (22) and (23) are asymptotically stable with probability one or almost surely stable. Over the green region, 

the solutions are unstable. Obviously, one needs linearly increasing to stabilize the system for growing noise. However, 

this effect holds up to    , only. Overcritical damping is less effective since growing damping stabilizes weak noise  

perturbations, only. For        vehicle and road are rigidly coupled. Hence, stabilization is no longer possible. For an 

extended stability investigation, the above polar coordinate system                     is applied to Eq.(24). For      
this leads to the same stability equations for the angles         and radii         except that    in the radii equations is 

replaced by      when because of          there is noise in Eq. (24). Therewith, the radius equation (37) reads as  

                                                                                                

As already shown before, the Lypaunov exponents of the mean value solutions are calculated to  

                                                                                                                  

        
 
                                                                                     

The rotation numbers of the mean value solutions remain unchanged. In Figure 12, the stability boundaries of the mean  
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value solutions are plotted in Figure 14, marked by blue lines. Note that stability and rotation behavior of the mean 

value solutions can also investigated by means of the four eigen-values of Eq. (24) where the real and imaginary parts 

take the role of Lyapunov exponents and rotation numbers, respectively. Correspondingly, one finds one real part and 

four imaginary parts for       In the overcritical case      the eigen-values of Eq. (24) lead to two real parts and 

two imaginary parts. According to [19], the stability behavior can also be investigated by means of the p-th mean 

behavior in order to get the almost sure stability for     and the stability in mean for       In [21], one finds 

approximations of stability boundaries of second order systems for all exponents      

 

              
 

   Fig. 13:  Four rotation numbers depending on speed                    Fig. 14: Boundaries for almost sure stability and  

  frequency for the damping values                                   stability in mean plotted against system damping    

 

7. Conclusions 

There are two multiplicative road models which include the limiting case of deterministic harmonic roads. The first one 

is obtained by non-linear filter equations driven by white noise. Their stationary solutions are similar to Gaussian but 

bounded with vanishing mean and standard deviation which coincides with the deterministic behavior in the limiting 

case of vanishing excitation bandwidth      Because of specially adapted non-linearity, the mean square equations 

calculated by means of Itô’s calculus are linear. The second model applies sinusoidals where the excitation frequency is 

perturbed by white noise of intensity  . Inversely to the first model, standard deviations are zero and mean values 

coincide with the deterministic harmonic behavior passing to the limit case       of vanishing noise perturbation. 

New results are found for more realistic perturbations by means of filtered noise. For low-pass filtered perturbations, the 

resonance peak is reduced. However, it is increased applying white noise perturbations. This resonance induction is 

even stronger when instead of white noise high-pass filtered perturbations are applied.   
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