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Summary. Canard cycles are periodic orbits that appear as special solutions of fast-slow systems (or singularly perturbed Ordi-
nary Differential Equations). It is well known that canard cycles are difficult to detect, hard to reproduce numerically, and that
they are sensible to exponentially small changes in parameters. By combining Geometric Singular Perturbation Theory and state
feedback control techniques, we design controllers that stabilize canard cycles of planar fast-slow systems with a folded critical
manifold. As an application, we propose a controller that produces stable mixed-mode oscillations in the van der Pol oscillator.

Introduction

Fast-slow systems (also known as singularly perturbed ordinary differential equations are often used to model phenomena
occurring in two or more time scales. Examples of these are vast and range from oscillatory patters in biochemistry and
neuroscience all the way to stability analysis and control of power networks, among many others. The overall idea behind
the analysis of fast-slow systems is to separate the behavior that occurs at each time scale, understand such behavior,
and then try to elucidate the corresponding dynamics of the full system. Many approaches have been developed, such as
asymptotic methods, numeric and computational tools and geometric techniques, see e.g. [4, 10].
Although the time scale separation approach has been very fruitful, there are some cases in which it does not suffice
to completely describe the dynamics of a fast-slow system. The reason is that, for some systems, the fast and the slow
dynamics are interrelated in such a way that some complex behavior is only discovered when they are not fully separated.
An example of the aforementioned situation are the so-called canards [1]. Canards are orbits that, counter-intuitively,
stay close for a considerable amount of time to a repelling set of equilibrium points of the fast dynamics. Canards are
extremely important in the theory of fast-slow systems, and through them one can explain, for example, the very fast
onset of large amplitude oscillations due to small changes of a parameter in neuronal models[3, 9], and the delayed loss
of stability due to a slow passage through a singularity [11, 12]. However, due to their very nature, canard orbits are not
robust, meaning that small perturbations may drastically change the shape of the orbit.
On the other hand the application of singular perturbation techniques in control theory is far-reaching. Perhaps, as already
introduced above, one of the biggest appeals of the theory of fast-slow systems is the time scale separation, which allows
the reduction of large systems into lower dimensional ones for which the control design is simpler. Applications range
from the control of robots, all the way to industrial biochemical processes, and large power networks [7]. However, as
already mentioned, not all fast-slow systems can be analyzed by the convenient time scale separation strategy, and although
some efforts from very diverse perspectives have been made, a general theory that includes not only the regulation problem
but also the path following and trajectory planning problems is, to date, lacking.
Here we merge techniques of fast-slow dynamical systems with control theory methods to develop controllers that stabilize
canard orbits. The idea of controlling canards has already been explored in [2], where an integral feedback controller is
designed for the FitzHugh-Nagumo model to steer it towards the so-called “canard regime”. In contrast, here we take a
more general and geometric approach by considering the canard normal form.

Main results

The formal statements of these results and the corresponding proofs are available in [5].

Consider the fast-slow control problem

x′ = −y + x2 + u(x, y, ε, α)

y′ = ε(x− α),
(1)

where (x, y) ∈ R2 are the fast and slow variables respectively, α ∈ R is a parameter, 0 < ε � 1 is the perturbation
aprameter responsible for the time scale separation, and u ∈ R denotes a state-feedback controller.
Our main result is a controller u that renders canard cycles of (1) asymptitically stable as shown in Figure 1.
As an application we consider controlled the van der Pol equation

x′ = −y + x2 − 1

3
x3 + u

y′ = εx.
(2)

and design a controller that is able to produce in a robust way any type of Mixed-Mode Oscillation (MMO) allowed by
the geometry of the critical manifold. An example of such MMO is shown in Figure 2.
Our main techniques of analysis are the blow-up method [6], canard theory [1, 8] and state feedback control design
based on Lyapunov stability [13].
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Figure 1: In both columns we show, in the first row the (x, y) phase portrait of the closed-loop system (1) and in the second row the
time-series of the corresponding controller. In all these simulations ε = 0.01. (a) The case of bounded canard cycles, where the desired
canard cycle to be followed is shown in dashed-grey. (b) The maximal canard case, which is unbounded, and yet can be followed with
a bounded controller.
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Figure 2: A sample of a Mixed-Mode Oscillation (MMO) with 3 Large Amplitude Oscillations (LAOs) and 4 Small Amplitude Os-
cillations (SAOs) produced by our controller. Such a controller has as parameters the number of LAOs, the number of SAOs, and the
height of the canards.

References

[1] F. Dumortier and R. Roussarie. Canard cycles and center manifolds, volume 577. American Mathematical Society, 1996.
[2] J. Durham and J. Moehlis. Feedback control of canards. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1):015110, 2008.
[3] G. B. Ermentrout and D. H. Terman. Mathematical foundations of neuroscience, volume 35. Springer Science & Business Media, 2010.
[4] N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. Journal of differential equations, 31(1):53–98, 1979.
[5] H. Jardon-Kojakhmetov and C. Kuehn. Controlling canard cycles. arXiv preprint arXiv:1911.11861, 2019.
[6] H. Jardón-Kojakhmetov and C. Kuehn. A survey on the blow-up method for fast-slow systems. arXiv preprint arXiv:1901.01402, 2019.
[7] P. Kokotovic, H. K. Khalil, and J. O’Reilly. Singular perturbation methods in control: analysis and design, volume 25. SIAM, 1999.
[8] M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions.

SIAM journal on mathematical analysis, 33(2):286–314, 2001.
[9] M. Krupa and P. Szmolyan. Relaxation oscillation and canard explosion. Journal of Differential Equations, 174(2):312–368, 2001.

[10] C. Kuehn. Multiple time scale dynamics, volume 191. Springer, 2015.
[11] A. I. Neishtadt. On delayed stability loss under dynamical bifurcations I. Differential Equations, 23:2060–2067, 1987.
[12] A. I. Neishtadt. On stability loss delay for dynamical bifurcations. Discrete and Continuous Dynamical Systems. Series S, 2:897, 2009.
[13] J. J. E. Slotine and W. Li. Applied nonlinear control, volume 199. Prentice hall Englewood Cliffs, NJ, 1991.


	Introduction
	Main results

