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SummaryA control technique to continuously drive a non-linear,rhanically excited oscillator between different kinds ofipdic

orbits is presented. The basis of the method is a temporalyfiequency driving of the system. Results show that twibopkc orbits

existing at two different frequency values (single frequedriving) having arbitrary periodicity can be smoothlarsformed into
each other. The method is a proper tuning of the excitatiopliumes of a dual-frequency driving combining the two esponding
frequencies. The requirements are the suitable choiceedfé¢iguency pair and the matching of the torsion humberseobtiunding
bifurcation points of the periodic orbits.

I ntroduction

In non-linear systems, multiple domains of periodic atwezmight exist in a given parameter space [1]. These danain
can overlap each other meaning that at their union, the mysteeven multi-stable [2]. The different stable solutions
usually represent different system performances; foams, a chemical reactor can have different chemical yieids,

it is important to be able to drive a system onto a desiredestthte in its parameter space. The main aim of this study is
to propose a technique that is suitable to smoothly drivesteay from one periodic domain to another.

The method works for harmonically driven non-linear ostdls in the parameter plane of its driving amplituéieand
frequencyw;. The technique is based on the addition of a second harmonipanent to the driving with amplitudés

and frequencws. With a proper tuning of the driving amplitudes, a perioditactor exists at, with A, = 0 can be
smoothly transformed onto another periodic orbit existsawith A; = 0. That is, the beginning and the end of the
transformation is a single frequency driven system, andntiieemediate states have dual-frequency driving. Through
the rest of the paper, the requirements of the transformauassibilities are discussed in general; and an example is
presented based on the Keller—Miksis equation that is anskecaler ordinary differential equation describing theiahd
pulsation of a single spherical bubble [3].

The control technique

For simplicity, let us consider dual-frequency driven setorder non-linear oscillators written as

iy = f(x1,22), 1)
T = g(x1,x9) + A1 coswit + As coswat. (2)

Assume that at fixed frequeney, there is a domain (section) of periodic solution with pdpig in the A; parameter line
(the amplitude of the second componentlis= 0). Similarly, assume that there is another segment of piersmlution
with periodp, in the A, parameter line4; = 0) at frequency values, different fromw;. Both periodic segments
are bounded by bifurcation points having torsion numielé]. The schematic draw in Fig. 1A demonstrates such an
example in the parameter plane of the excitation amplitudesnd A,. There are two requirements for the existence of a
set of solutions that connects the two segments of thesedieorbits (blue and red lines in Fig. 1A). Without a detdile
derivation, the first condition is that the ratio of the pes@nd ratio of the employed frequencies must be equal:

P1
P2 w2

w1

®3)

It must be stressed that periods of the opiteindp, are defined according to the period of the single frequenciyation

Ty = 27 /wy andTy = 27 /w,, respectively. If the condition given by Eq. (3) holds, thexipds of the two kinds of orbits
presented in Fig. 1A by the blue and red lines become equamijzoying the period of the dual-frequency drivifigas

a global Poincaré section. In this case, codimension-2dafion curves might exists that connect the bifurcatiomipo
pairs(qi1, g21) and(qi2, g22) (see the black curves in Fig. 1A). For such an existence gheexcted torsion numbers must
be equal representing topologically the same local flow efvibctor field along the black codimension-2 curves:

qi1 = 421, 4)
q12 = q22. 5)
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Figure 1: Panel A: Schematic draw of the transformation ipigg between two periodic orbits with arbitrary periaity in the
parameter plane of the amplitudes of the dual-frequeneyndyi Panel B: Transformation between period-3 and pebiodbits through
the yellow surfaces. The employed model is the dual-frequdniven Keller—Miksis equation being a second order aadirdifferential
equation.

The control technique is demonstrated in Fig. 1B employirggeller—Miksis equation being a second order non-linear
oscillator. For the details of the equation, the reader fisrred to the review paper [3]. The frequency combination
used iswg; = wi/wg = 5 andwprs = wa/wy = 3, wherewy is the linear resonance frequency of the system. The
periods of the orbits studied agg = 5 andp, = 3. Thus, the condition given by Eg. (3) holds. In this figures th
saddle-node and the period doubling bifurcation pointsaaeked byS N and PD respectively. Their torsion numbers
are all equalig1; = q12 = ¢21 = ¢22 = 1 fulfilling also the second requirement defined via Eqgs. 8)-{The periodic
orbits corresponding to the single frequency driving aghhghted by the blue (period-5 atz; = 5) and red (period-3
atwpre = 3) curves. The yellow surfaces represent a set of perioditsarbnnecting the period-3 and the period-5 orbits.
Therefore, with a proper tuning of the amplitudés and A, of the dual-frequency driving, the system can be smoothly
transformed between the period-3 orbits lying on the redesiand the period-5 attractors represented by the bluesurv
Observe that the dual-frequency driving is temporary ard the initial and final state of the transformation relate to
single frequency driving with different frequencies. It shbe emphasized that with a different choice of frequenagpa
transformation can be achieved between other pairs of gierawbits.

Conclusions

The main significance of the proposed control techniqueaitalgiven system can be driven to a desired periodic solution
in excitation-amplitude—frequency-parameter plane. ddvantage of the method is that direct attractor selectiquos-
sible meaning that the final state of the trajectory is natiectal (as in case of many control of multistability tecunes).
The disadvantage is that a detailed knowledge of the bifircatructure of the periodic orbits is required to contred
system confidently. It is worth mentioning that the techeidgifirst identified in the previous paper of the authors [5];
however, only for a specific pair of periodic orbits and a galigation was not discussed.
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