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Summary. A control technique to continuously drive a non-linear, harmonically excited oscillator between different kinds of periodic
orbits is presented. The basis of the method is a temporary dual-frequency driving of the system. Results show that two periodic orbits
existing at two different frequency values (single frequency driving) having arbitrary periodicity can be smoothly transformed into
each other. The method is a proper tuning of the excitation amplitudes of a dual-frequency driving combining the two corresponding
frequencies. The requirements are the suitable choice of the frequency pair and the matching of the torsion numbers of the bounding
bifurcation points of the periodic orbits.

Introduction

In non-linear systems, multiple domains of periodic attractors might exist in a given parameter space [1]. These domains
can overlap each other meaning that at their union, the system is even multi-stable [2]. The different stable solutions
usually represent different system performances; for instance, a chemical reactor can have different chemical yield.Thus,
it is important to be able to drive a system onto a desired stable state in its parameter space. The main aim of this study is
to propose a technique that is suitable to smoothly drive a system from one periodic domain to another.
The method works for harmonically driven non-linear oscillators in the parameter plane of its driving amplitudeA1 and
frequencyω1. The technique is based on the addition of a second harmonic component to the driving with amplitudeA2

and frequencyω2. With a proper tuning of the driving amplitudes, a periodic attractor exists atω1 with A2 = 0 can be
smoothly transformed onto another periodic orbit exists atω2 with A1 = 0. That is, the beginning and the end of the
transformation is a single frequency driven system, and theintermediate states have dual-frequency driving. Throughout
the rest of the paper, the requirements of the transformation possibilities are discussed in general; and an example is
presented based on the Keller–Miksis equation that is a second order ordinary differential equation describing the radial
pulsation of a single spherical bubble [3].

The control technique

For simplicity, let us consider dual-frequency driven second order non-linear oscillators written as

ẋ1 = f(x1, x2), (1)

ẋ2 = g(x1, x2) +A1 cosω1t+A2 cosω2t. (2)

Assume that at fixed frequencyω1, there is a domain (section) of periodic solution with period p1 in theA1 parameter line
(the amplitude of the second component isA2 = 0). Similarly, assume that there is another segment of periodic solution
with periodp2 in the A2 parameter line (A1 = 0) at frequency valueω2 different fromω1. Both periodic segments
are bounded by bifurcation points having torsion numbersq [4]. The schematic draw in Fig. 1A demonstrates such an
example in the parameter plane of the excitation amplitudesA1 andA2. There are two requirements for the existence of a
set of solutions that connects the two segments of these periodic orbits (blue and red lines in Fig. 1A). Without a detailed
derivation, the first condition is that the ratio of the periods and ratio of the employed frequencies must be equal:

p1
p2

=
ω1

ω2

. (3)

It must be stressed that periods of the obitsp1 andp2 are defined according to the period of the single frequency excitation
T1 = 2π/ω1 andT2 = 2π/ω2, respectively. If the condition given by Eq. (3) holds, the periods of the two kinds of orbits
presented in Fig. 1A by the blue and red lines become equal viaemploying the period of the dual-frequency drivingT as
a global Poincaré section. In this case, codimension-2 bifurcation curves might exists that connect the bifurcation point
pairs(q11, q21) and(q12, q22) (see the black curves in Fig. 1A). For such an existence, the connected torsion numbers must
be equal representing topologically the same local flow of the vector field along the black codimension-2 curves:

q11 = q21, (4)

q12 = q22. (5)
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Figure 1: Panel A: Schematic draw of the transformation possibility between two periodic orbits with arbitrary periodicity in the
parameter plane of the amplitudes of the dual-frequency driving. Panel B: Transformation between period-3 and period-5 orbits through
the yellow surfaces. The employed model is the dual-frequency driven Keller–Miksis equation being a second order ordinary differential
equation.

The control technique is demonstrated in Fig. 1B employing the Keller–Miksis equation being a second order non-linear
oscillator. For the details of the equation, the reader is referred to the review paper [3]. The frequency combination
used isωR1 = ω1/ω0 = 5 andωR2 = ω2/ω0 = 3, whereω0 is the linear resonance frequency of the system. The
periods of the orbits studied arep1 = 5 andp2 = 3. Thus, the condition given by Eq. (3) holds. In this figure, the
saddle-node and the period doubling bifurcation points aremarked bySN andPD respectively. Their torsion numbers
are all equal:q11 = q12 = q21 = q22 = 1 fulfilling also the second requirement defined via Eqs. (4)-(5). The periodic
orbits corresponding to the single frequency driving are highlighted by the blue (period-5 atωR1 = 5) and red (period-3
atωR2 = 3) curves. The yellow surfaces represent a set of periodic orbits connecting the period-3 and the period-5 orbits.
Therefore, with a proper tuning of the amplitudesA1 andA2 of the dual-frequency driving, the system can be smoothly
transformed between the period-3 orbits lying on the red curves and the period-5 attractors represented by the blue curves.
Observe that the dual-frequency driving is temporary and that the initial and final state of the transformation relate to
single frequency driving with different frequencies. It must be emphasized that with a different choice of frequency pairs,
transformation can be achieved between other pairs of periodic orbits.

Conclusions

The main significance of the proposed control technique is that a given system can be driven to a desired periodic solution
in excitation-amplitude–frequency-parameter plane. Theadvantage of the method is that direct attractor selection is pos-
sible meaning that the final state of the trajectory is not incidental (as in case of many control of multistability techniques).
The disadvantage is that a detailed knowledge of the bifurcation structure of the periodic orbits is required to controlthe
system confidently. It is worth mentioning that the technique is first identified in the previous paper of the authors [5];
however, only for a specific pair of periodic orbits and a generalisation was not discussed.
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