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Controlled motion of two interacting particles on a rough inclined plane
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Summary. Two interacting particles on a rough inclined plane are considered. Coulomb’s friction acts between the particles and the
underlying surface. The system is controlled by the force of interaction of the particles. It is assumed that the parameters of the system
are such that one of the bodies can be moved upward along a line of maximum slope provided that the other body is resting. The
controllability of the system between two arbitrary states of rest is investigated. The system is proved to be controllable if the particles
do not lie on a common line of maximum slope at the initial instant. A control algorithm that alternates quasistatic and fast modes of
motion is constructed.

Statement of the problem

Consider a system of two particles on an inclined planeΠ (Fig. 1a). Letm andM denote the masses of the particles
(m < M ), k the coefficient of Coulomb’s friction between the particles and the underlying plane,γ the inclination angle
of the plane,g acceleration due to gravity,F the interaction force applied by particleM to particlem. We assume that for
F = 0, both particles can stay at rest and that particlem can be moved from the state of rest by the forceF upward along
the line of maximum slope, while particleM does not move:

kM cos γ ≥ (M + m) sin γ + km cos γ. (1)

Let the system under consideration be at rest at the initial instant. The aim of our study is to find out whether the system
can be driven from the initial state to any other state of rest on the plane. For the horizontal plane (γ = 0), this is
impossible. We are interested in the controllability of the system in principle. For this reason, we do not impose any
constrains on the magnitude of the control force, allow instantaneous change in the positions of the particles, and assume
that the particles may move through one another. If the particles at the initial instant rest on the common line of maximum
slope, they cannot quit this line, and this case will not be considered. We will show that the system can be driven between

Figure 1: a) Two-particle system on an inclined plane, b) Quasistaic trajectories of particlem

the initial and terminal states by combining two types of motions: quasistatic motions and fast motions. The quasistatic
motion is a slow motion that can be regarded as a continuous sequence of equilibria, while for fast motion we admit an
instantaneous change in the positions of the particles.

Quasistatic motions

Inequality (1) implies that in quasistatic motions, only particlem moves, while particleM is at rest. Denote byLM the
line of maximum slope passing through the pointM . Introduce in planeΠ the coordinate frameMxy (Fig. 1a). The
axisy lies on lineLM and is directed upward. The trajectories of the quasistatic motion of particlem are defined by the
equation

dr

dα
= ±r

√
1− a2 cos2 α

a cosα
, a =

tan γ

k
, (2)

wherer andα are the polar coordinates of particlem in planeΠ related to the poleM and the polar axisMx. When
moving quasistatically, particlem cannot intersect lineLM ; therefore we assumeα ∈ (−π/2, π/2). Sign minus on the
right-hand side in Eq. (2) corresponds to the repulsive motion when the interaction forceF applied to particlem acts from
M towardm, while sign plus corresponds to the attractive motion. Equation (2) has a closed-form solution in terms of
elementary functions. Denote byr±(α, α0, r0) the solution of Eq.(2) subject to the initial conditionsr(α0) = r0. The
functionr+ (r−) monotonically increases (decreases) asα increases in the interval(−π/2, π/2). The functionsr+ and
r− have the following properties:

lim
α→π/2

r−(α) = 0, lim
α→−π/2

r−(α) = ∞, lim
α→−π/2

r−(α) cos α = ∞. (3)
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lim
α→π/2

r+(α) = ∞, lim
α→−π/2

r+(α) = 0, lim
α→π/2

r+(α) cos α = ∞. (4)

r−(α, α0, r0) = r+(−α,−α0, r0). (5)

According to the properties of Eqs. (3)–(5), the trajectories of the quasistatic motion of particlem on planeΠ have the
shape shown in Fig. 1b. For each point (α0, r0) on the plane, one can indicate an area (attainable area) to each point of
which particlem can be driven quasistatically. This area is bounded by the curvesr±(α, α0, r0) (thick lines in Fig. 1b).
One can drive particlem to any internal point(α1, r1) of the attainable area using one switching between the repulsive
and attractive motions; the particle moves first along the curver−(α, α0, r0) or r+(α, α0, r0) and then, respectively,
along the curver+(α, α1, r1) or r−(α, α1, r1). In particular, using one switching, one can get quasistatically to the
point (α0 − δα, r0), δα ¿ 1, from the point (α0, r0). Then, similarly, using one switching, one can get to the point
(α0 − 2δα, r0) from the point (α0 − δα, r0), and so on. By lettingδα → 0, we obtain that the trajectory of particlem
can be made arbitrarily close to the circular arc of radiusr0; the angleα monotonically decreases, approaching but not
reaching a value of−π/2. Therefore, particlem can be driven from the point (α0, r0) quasistatically along a trajectory
arbitrarily close to the circular arcr = r0, α ∈ (−π/2, α0], with monotonically decreasing angleα. We will call such a
motion the quasistatic motion along a circumference.
All the aforesaid remains valid for the quasistatic motion forα ∈ (π/2, 3π/2). In this case, the repulsive and attractive
trajectories will be symmetric about theMy-axis to the respective trajectories forα ∈ (−π/2, π/2); particlem can be
driven along a circumference, withα monotonically approaching but not reaching a value of3π/2.

Fast motions. An algorithm for driving the system to the terminal state

By fast motions we understand the motions that drive the system between different states of rest in an infinitesimal time.
The force of interaction between the particles for such motions is much larger than the external friction forces; therefore,
the system’s center of mass and the line that connects the particles are fixed. We allow the particles in the fast motion to
pass through one another, changing as a result the direction of the vector

−−→
Mm to the opposite one. By means of the fast

motion, we can move particleM to any position on the initial lineMm.
By alternating fast and quasistatic motions one can move particlem to any position on the plane, with particleM remain-
ing arbitrarily close to its initial position. We will show this for the case where the initial and terminal positions of particle
m belong to different half-planes with respect to lineLM . We assume for definiteness thatα ∈ (π/2, 3π/2) for the initial
positions andα ∈ (−π/2, π/2) for the terminal position. We will show first that particlem can be brought onto a semi-
circumference of an arbitrarily small radius on the right half-plane, i.e., to any position(α∗, r∗) such thatr∗ = ε, ε ¿ 1,
andα∗ ∈ (−π/2, π/2), while the change in the position of particleM is small. To this end we at the first stage move
quasistatically particlem toward particleM until the distancer between the particles becomesr = ε. If at this instant
the angleα does not satisfy the inequality|α− 3π/2| ≤ |π/2−α∗|, we move particlem along a circumference until this
inequality holds. After this, we perform the fast motion as a result of which particlesm andM change their positions on
the lineMm to the positions that are symmetric about the center of mass. The change in the position of particleM at this
stage is small (the distance moved by this particle is less thanε), while the distance between the particles does not change.
At the final stage, particlem moves quasistatically clockwise (with the angleα monotonically decreasing) until the angle
α becomes equal to the desired valueα∗. Thus we proved the possibility for particlem to be driven to an arbitrary point
of a circumference of small radius on the right half-plane. Taking into account the fact that the quasistatic repulsive and
attractive trajectories that go out from all points(α∗, r∗), α∗ ∈ (−π/2, π/2), r∗ = ε, sweep the entire right half-plane,
we conclude that particlem can be driven quasistatically into any position on the right half-plane. Somewhat simplifying,
we can regard the algorithm presented above as driving particlem onto particleM followed by the motion of particlem
along an arbitrary trajectory of quasiatatic repulsion that goes out from the origin.
In conclusion, we describe an algorithm that drives the system to the desired terminal state. We will confine ourselves to
the case where the terminal positions of the particles do not lie on the common line of maximum slope. At the first stage,
by alternating fast and quasistatic motions as was described above, we bring the system to a position in which the line that
connects the particles passes through the terminal position of particleM . Then by means of fast motion we move particle
M to its terminal position. Finally, by using the algorithm described above, we move particlem to the desired terminal
state; at this stage, the change in the position of particleM is arbitrarily small.

Conclusions

It is proved that if at the initial instant the particles do not lie on the common line of maximum slope, the system can
be driven into an arbitrarily small neighborhood of any terminal position on an inclined rough plane by combining qua-
siastatic and fast motions. A system of two interacting particles is a simple model of limbless worm-like crawlers. This
biomimetic principle of motion can be used for mobile microrobots. It is important that when on a horizontal plane, a
two-particle locomotion system that is in a state of rest at the initial time instant can move only along a line that connects
the initial positions of the particles, whereas on an inclined plane, the system can be driven to any terminal position.


