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Dynamical analysis of TET in a non-smooth vibro-impact system
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Summary. Applying a novel analysis we study targeted energy transfer (TET) in a non-smooth vibro-impact system (VI), comprising
a ball freely moving within a frictionless slot made within a harmonically excited large mass. Both the ball and the mass can move
independently between inelastic collisions. The proposed semi-analytical approach allows analyzing TET in the discontinuous piece-
wise linear systems exactly, in contrast with previous studies via approximations related to a specific state. We obtain parameter ranges
for the impact pair to effectively transfer energy to it from the base excited system via a series of impacts.

Problem statement

Targeted energy transfer may be viewed as an extension of a classical linear tuned mass damper (TMD) theory, where a
second mass-spring system is added to an original single-degree-of-freedom (SDOF) oscillator to avoid a high-amplitude
response near its resonance frequency [1, 2]. The parameters of the resulting two DOF (TDOF) system are selected so
achieve a low energy state in the original system, while the added mass-spring subsystem stores the energy of the entire
TDOF system. While TMD is a standard approach for vibrational mitigation and energy transfer, used by engineers for
over 100 years, it has no direct analogy for nonlinear systems. Without an exact analytical solution for the classical non-
linear TDOF system there is no “obvious” way to choose the systems’ parameters for transferring energy from a forced
oscillator to a nonlinear energy sink via nonlinear coupling, see [3, 4] and references therein. Analyses are generally
based on weakly nonlinear approximations or model reductions. Parametric studies are then limited requiring simulations
for explorations of the full nonlinear behavior.

Alternatively, we note that energy transfer in continuous nonlinear systems is a special case of more general nonlinear
systems, which can be non-smooth and discontinuous. Considering TET via persistent vibro-impact motion (e.g. as in
[5, 6]) we focus on the non-smooth impact pair as in [5, 7], with a small mass ball traveling freely within a slot of length
2b made in the large excited mass. The dynamics of the displacements q1, q2 of the large and small masses with mass M
and m respectively, complemented by the impact conditions at |q1 − q2| = b, is described by the following equations:
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where k is the elastic spring coefficient, E, ω, φ are the excitation amplitude, frequency, and initial phase, r is the
restitution coefficient, t is the time, the dot indicates derivatives with respect to time. The instantaneous impact conditions
(2) capture the two-way energy exchange between the masses, in contrast to the extensive literature on bouncing ball
dynamics, where the mass of the ball is typically assumed as negligible [8].

Analytical approach
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, x2 =
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and rescaled time t̂ = ω0t, and dropping ’̂s for the remainder, we integrate the
equations of motion (1), and apply the impact conditions (2) when the ball impacts either end of the cavity. This yields
the map of the state from the previous impact time tk−1 to the next impact time tk in terms of all system parameters
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ẋ1,k−1 +

µ− r
1 + µ
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Here the conditions are in terms of xj,k, ẋj,k the displacements and velocities at the impact time tk, corresponding to
the end of each sub-interval of continuous motion, so that the superscript − as in (2) can be dropped without loss of
generality. The coefficients al,bl are functions (not given here) of the previous time tk−1 and states ẋj,k−1xj,k−1. Taking
|x1,k−1−x2,k−1| = 1 and |x1,k−x2,k| = −1 yields the map P1 for the motion from left to right in the capsule. Similarly
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Figure 1: Upper: Bifurcation diagram of relative impact velocity ẇ for (red (blue) is left (right) impact obtained numerically) vs.
forcing amplitude A; Green solid (dotted) lines are stable (unstable) 1:1 solutions obtained analytically. Lower: Phase planes with ẇ
vs w at A = .015, .021, .023 and .05 showing 1:1, 1:1/2T , 2:1, and 2:2 periodic solutions, respectively.

we determine maps for the other motions, e.g. P2 right to left, and P3 (P4) for successive impacts on left (right). Thus it
is possible to construct a sequence of maps describing the different periodic motions, whether successive impacts occur
on the same or different ends of the slot. We use the notation n:m/pT corresponding to pT -periodic solutions with n (m)
impacts on the left (right) of the capsule, given an external forcing with period T on the large mass. Then 1:1 solutions, the
simpler case where the ball has alternating impacts on either end of the capsule, are determined from the system (3) given
by the composition P1◦P2 together with the periodicity condition. Similarly 2:1 solutions are obtained from the combined
equations from the composition P3 ◦P1 ◦P2 plus periodicity, and so on for other n:m behaviors. From these compositions
plus periodic conditions we obtain the period solution in terms of state vectors H∗

k = (φk, ẋ1,k, ẋ2,k, x1,k), where the
phase shift φk of the impact is relative to the forcing. Based on these analytical results for the periodic solution, we can
also study their linear stability [9], and thus identify analytically both traditional bifurcations such as period doubling
and discontinuity-induced bifurcations. The procedure described in this section is also applied to obtain semi-analytical
solutions of a soft impact model and are used to analyse the compliant system dynamics.

Comparison of Numerical and Analytical results

Figure 1 shows the numerically obtained bifurcation structure of the relative impact velocity ẇ = ẋ1k − ẋ2k vs. forcing
amplitude A, illustrating 1:1, 1:1/2T , 2:1, and 2:2 solutions, as well as chaotic behavior occurring for different A. Stable
and unstable 1:1 solutions obtained analytically are shown, indicating good agreement between analytical and numerical
results for the stable 1:1 periodic solutions, as well as the regions for instability. From the results we can calculate
performance based on energy transfer efficiency, for example, kinetic energy transferred relative to work done by the
excitation. This measure (not shown) indicates improved performance via 1:1 type periodic solutions, with some reduced
performance at non-smooth bifurcations such as 1:1 to 2:1 transitions.

Conclusions

We study targeted energy transfer in a VI system by expressing the inter-interval dynamics as a sequence of maps. We
capture physically-relevant motions via the derived semi-analytical approach that reveal critical parameter dependencies
of the dynamics and energy transfer. Developing this approach within the instantaneous (hard) impact condition allows
us to generalize to compliant impact conditions.
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