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Summary. The free propagation of nonlinear harmonic waves in acoustic metamaterials with inertia amplification is investigated. A

Lagrangian model is formulated to describe the nonlinear dynamics of a periodic chain of elastically coupled point masses (atoms), re-

alizing a minimal 1D acoustic metamaterial with local inertia-amplifying oscillators. First, the nonlinear equations of motion governing

the free undamped oscillations of the tetra-atomic periodic cell are formulated, and the linear dispersion properties governing the small-

amplitude range of wave propagation are determined. Second, the harmonically-periodic solutions characterizing the high-amplitude

range of wave oscillations are investigated, by employing the method of nonlinear maps. Some non-standard methodological tools are

introduced to consistently apply the map approach to the implicit function characterizing the nonlinear difference equations.

Introduction

The band structure of microstructured periodic media has long been attracting the scientific interest of researchers in lin-

ear and nonlinear dynamics. In the last years, a renewed attention has been devoted to the parametric and computational

design of phononic microstructured materials, targeted at fine-tuning the periodic microstructure to achieve unconven-

tional, superior of functional dispersion properties [1]. In this respect, the pressing technological demand for light-weight

materials serving as mechanical low-frequency filters or isolators has favoured the rapid diffusion and success of acoustic

metamaterials [2]. Indeed, the free propagation of elastic waves in acoustic metamaterials can be inhibited – even in the

absence of dissipation – by the linear mechanism of local resonance, which allows the opening, shifting and widening of

spectral band gaps by properly tuning the natural frequency of auxiliary periodic oscillators (resonators), locally coupled

to the cellular microstructure. From the physical viewpoint, low-frequency resonators tend to combine high flexibility

with large inertial masses, conflicting with the requirement of material lightness. In order to circumvent this conundrum,

proper solutions of inertia amplification can be adopted by introducing panthographic mechanisms, exploiting levered

masses coupled in parallel with elastic stiffnesses [3]. In this framework of extreme mechanical solutions, the combina-

tion of high microstructural flexibility, pantographically-amplified oscillations and null or minimal dissipation can be the

natural scenario for the development of important nonlinear dynamic phenomena.

Lagrangian model of the acoustic metamaterial

A Lagrangian model is formulated to describe the nonlinear dynamics of a periodic chain of undamped oscillators (Figure

1), in which only linear forces of attraction/repulsion are exchanged between any pair of adjacent point masses (primary

atoms). The atomic chain represents a minimal physical realization of a 1D acoustic metamaterial with inertia-amplifying

auxiliary oscillators (secondary atoms), rigidly connected to the primary atoms by a panthographic mechanism.

Equations of motion

Collecting the nondimensional displacement variables u = U1/L, w = (U3 − U1)/L, uℓ = Uℓ/L and ur = Ur/L in

the vector u = (u, w, uℓ, ur), the exact nonlinear equation governing the motion of the generic cell can be formulated.

Expanding in Taylor series around the rest position u = 0 and retaining terms up to the third order, the equation reads

Mü + Ku + m2(u̇, u̇) + n2(ü, u) + m3(u, u̇, u̇) + n3(ü, u, u) = 0 (1)

The quasi-static equilibrium at the cell boundary nodes is instead governed by the linear equation Kpu = fp, where the

external forces fp = (fℓ, fr) can easily be related to the internal stresses σ = (σℓ, σr). Partitioning the displacement

vector u, the inner and outer displacement subvectors read ua = (u, w) and up = (uℓ, ur), respectively. Collecting all

the outer variables in the vector v = (uℓ, ur, σℓ, σr), the quasi-static equilibrium equations can be inverted to obtain the

static condensation rule ua = Sv. After condensation, the nonlinear equations of motion reads

Mv̈ + Kv + p2(v̇, v̇) + q2(v̈, v) + p3(v, v̇, v̇) + q3(v̈, v, v) = 0 (2)

Focusing the analysis on the only periodic solutions in the nondimensional τ -time domain, the real-valued unknown v(τ )
can conveniently be expressed in Fourier series (truncated to account for the first harmonic terms)

v(τ ) =
∞

∑

−∞

ak eıkωτ
≃ a eıωτ + ā e−ıωτ , with k ∈ Z (3)

where the Fourier coefficient a = (Aℓ, Ar, Bℓ, Br) serves as (unknown) amplitude of the first harmonic component and

bar indicates complex conjugate. The nondimensional parameter ω plays the role of circular frequency for the harmonic

motion.
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Figure 1: Acoustic metamaterial: (a) tetra-atomic crystal structure, (b) periodic cell of the lagrangian model, (c) mechanical properties.

Nonlinear map approach

The nonlinear equations of motion (2) can be linearized in the small-amplitude oscillation range. Therefore, the linear

dispersion functions ω(β) relating the frequency ω to the nondimensional wavenumber β can be determined by applying

either the Floquet-Bloch theory [4] or the map approach [5]. The latter technique employs the formal analogy between

the wave periodicity (in the β-space) and the Lyapunov stability (in the τ -space) for discrete systems. The map approach

can be applied to nonlinear systems governed by explicit equations ẏ = f (y) to analyze the periodic solutions in the

high-amplitude range of wave oscillations [6].
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Figure 2: Linear spectrum (blue curves) and amplitude depen-

dent frequency functions (red curves)

However, the nonlinear equations (2) can be manipulated

to achieve only the implicit form g(ẏ, y) = 0, which may

require a different mathematical treatment [7]. Specifically,

according to the most general definition of discrete implicit

map, y0 is a p-periodic point of the implicit dynamic system

g(ẏ, y, α) = 0 if























g(y0, y1, α) = 0

g(y1, y2, α) = 0

...
g(yp−2, yp−1, α) = 0

g(yp−1, y0, α) = 0

(4)

Therefore, the y0 stability can be analysed by introducing

bifurcation conditions in order to assess the critical values

of the parameter set α. The periodic points can be searched

for the nonlinear system under investigation by setting ẏ =
(Ar , Br, Ār, B̄r) and y = (Aℓ, Bℓ, Āℓ, B̄ℓ) and assuming

ω as control parameter in the α-set.

Equations (4) can be stated and solved for particular p-cases (p = 1, 2), giving solutions ω(y0, y1) corresponding to

β = 2π/p. Using polar representations Aℓ = aℓ eıφ and Bℓ = bℓ eıϕ, Figure 2 shows the amplitude-dependent frequency

solutionsω(aℓ) or ω(bℓ), as obtained by settingy1 =y0 eı 2π/p. The amplitude-dependent frequency curves have dominant

softening behaviour for small amplitudes, as expected for inertial nonlinearities [8], and originate from the linear spectrum

for null amplitudes. The softening behaviour tends to enlarge the amplitude-dependent stop bandwidth (green region).

Conclusions

Nonlinear periodic solutions for the free wave propagation have been determined for a 1D acoustic metamaterial waveg-

uide with inertia amplification. The nonlinear mapping approach has been employed, as it applies to discrete implicit

maps. Amplitude-dependent frequency functions have been determined for particular oscillation periodicities.
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