ENOC 2020, July 5-10, 2020, Lyon, France

Finding connecting orbits between saddle periodic orbits as
organising centres of complicated dynamics

Nelson Wong*, Hinke M. Osinga* and Bernd Krauskopf*
*Department of Mathematics, University of Auckland, Auckland, New Zealand

Summary. We study heterodimensional cycles between two periodic orbits in a four-dimensional vector field. Such cycles are char-
acterised by a connecting orbit that lies in the intersection of two two-dimensional manifolds; the returning connection is given by a
family of connecting orbits in the generic two-dimensional intersection of two three-dimensional manifolds. Heterodimensional cycles
are known to organise highly complicated dynamics, which persist under C*-perturbations of the vector field. There are very few
explicit examples known from applications; we study one such example, namely, a vector field model for calcium dynamics in a cell.
We employ Lin’s method to compute heterodimensional cycles and associated nearby global bifurcations. We present a cycle that is
non-orientable and compute its locus in a two-parameter plane. In this way, we explore how it contributes to the organisation of the
overall bifurcation structure, which, in turn, elucidates mechanisms behind the generation of C' !_robust chaotic dynamics.

A connecting cycle between two saddle periodic orbits is heterodimensional if the periodic orbits have unstable manifolds
of different dimensions. Heterodimensional cycles can only exist in vector fields of dimension at least four, and are known
to generate highly complicated dynamics [1, 2, 3, 5], including infinitely many periodic and/or homoclinic orbits. Further-
more, if a system has a codimension-one heterodimensional cycle, then every other system in a C'*-neighbourhood about
the original system also has a heterodimensional cycle. We are interested in the mechanism behind such C'!-robustness,
and study the existence and properties of heterodimensional cycles in an explicit four-dimensional vector field.

Heterodimensional cycles are primarily studied abstractly. In particular, there are very few known examples arising out
of applications. We study a model for intracellular calcium oscillations that is known to feature a heterodimensional
cycle [7]. The equations are given by
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Here, c represents the calcium concentration in the main part of the cell body (the cytosol) and ¢; the total calcium
concentration inside the cell (including that in an internal calcium store, known as the endoplasmic reticulum or ER); v
is the membrane potential; and n is a gating variable that represents the fraction of open channels through which calcium
enters the cytosol from the ER. System (1) is written in a moving-frame coordinate system and the differentiation is with
respect to the travelling-wave coordinate. We choose the same parameters as in [7] with s = 9.0 fixed, and we vary the
flux J of calcium entering from outside the cell as our bifurcation parameter; see Table 1.
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0.05 | 20.0 | 20.0 | 200 | 20| 1.0 | 20| 50| 250|021 9.0

Table 1: Parameter values for the intracellular calcium model (1).

With this explicit model, we can leverage advanced numerical methods to study heterodimensional cycles in a concrete
setting. To this end, we set up a two-point boundary value problem (2PBVP) based on Lin’s method that represents the
(non-robust) connecting orbit. More precisely, we define an orbit segment that starts near a saddle periodic orbit and ends
in a three-dimensional cross-section X, which we choose to be locally transverse to the flow [6]. We also define a second
orbit segment that starts in . and ends near another saddle periodic orbit. Here, we fix parameters as in Table 1 and start
with J = 2.957, which we estimate to be close to the actual bifurcation value. The two orbit segments are restricted
such that the difference between their end points in X lies in a prescribed Lin direction. This 2PBVP can be solved by
pseudo-arclength continuation techniques in AUTO [4]. As we vary J, we detect the connecting orbit as a zero of the
distance between the end points in 3. Once the connecting orbit has been found, its locus can be computed by varying
two system parameters while keeping the distance at zero.

We find a heterodimensional cycle in system (1) for J ~ 2.95748; this cycle is shown in Figure 1 in projection onto
(¢, v, c¢)-space. Specifically, we show the single connecting orbit Q7™ (blue) from the saddle periodic orbit T'; (green) to
the saddle periodic orbit I'pp (green), and the family S of orbits from I'pp to I'y that forms a two-dimensional surface
(red).
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Figure 1: Three-dimensional projection onto (¢, v, ¢¢)-space of the non-orientable heterodimensional cycle in system (1) with J =

2.95748. Shown are saddle periodic orbits (green) I’y and T'pp, the codimension-one connecting orbit Q57 (blue) from I'; to T'pp,
and the returning surface .S (red) of robust connections.

Importantly, the heterodimensional cycle in Figure 1 is different from the one found in [7]. Its distinguishing feature is
that I'; is non-orientable. As we decrease J from near the Hopf bifurcation that creates I';, this periodic orbit undergoes a
period-doubling bifurcation, so that it has one negative unstable, one negative stable, and one positive stable Floquet mul-
tiplier, with the positive one being associated with the strongest contracting direction. This period-doubling bifurcation
is subcritical, and gives rise to a period-doubled orbit that undergoes its own period-doubling bifurcation before merging
with I'pp at a fold bifurcation. The periodic orbit I'pp in Figure 1 has one negative stable, one negative unstable, and one
positive unstable Floquet multiplier. The closure of .S is non-orientable since it is tangent to the weakly stable linear bun-
dle of 'y, which is associated with the negative stable Floquet multiplier. The non-orientability complicates the geometry
of S: S accumulates onto I'y in a twisting fashion, since the weakly stable linear bundle of I'; locally forms a M&bius band.

Starting from the heterodimensional cycle for J ~ 2.95748, we can compute the one-parameter family of this cycle in
a two-parameter plane. By studying the bifurcation structure of system (1) locally about this locus, we examine how the
parameter plane is organised to give rise to open regions where heterodimensional cycles are found robustly.

References

[1] Bonatti, C., Diaz, L. J., Viana, M. (2005) Dynamics beyond uniform hyperbolicity: a global geometric and probabilistic perspective. Springer
Verlag, Berlin-Heidelberg.

[2] Bonatti, C., Diaz, L. J. (2008) Robust heterodimensional cycles and C''-generic consequences. Journal of the Institute of Mathematics of Jussieu
7(3): 469-525.

[3] Diaz, L.J. (1995) Robust nonhyperbolic dynamics and heterodimensional cycles. Ergodic Theory & Dynamical Systems 15: 291-315.

[4] Doedel, E. J., Oldeman, B. E. (2007) AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Department of

Computer Science, Concordia University, Montreal, Canada, with major contributions from Champneys, A. R., Dercole, F., Fairgrieve, T. F,,
Kuznetsov, Yu. A., Paffenroth, R. C., Sandstede, B., Wang, X. J., Zhang, C. H.; available at http://cmvl.cs.concordia.ca/auto.

[5] Kostelich, E. J., Kan, 1., Grebogi, C., Ott, E., Yorke, J. A. (1997) Unstable dimension variability: a source of nonhyperbolicity in chaotic systems.
Physica D 109(1-2): 81-90.

[6] Krauskopf, B., Rief3, T. (2008) A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity
21(8): 1655-1690.

[7]1 Zhang, W., Krauskopf, B., Kirk, V. (2012) How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete and Continuous
Dynamical Systems—Series A 32(8): 2825-2851.



