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Phase resetting as a two-point boundary value problem
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Summary. Phase resetting is used in experiments with the aim to classify and characterise different neurons by their responses to
perturbations away from a periodic bursting pattern. The same approach can also be applied numerically to a mathematical model.
Resetting is closely related to the concept of isochrons of a periodic orbit, which are the submanifolds in its basin of attraction of all
points that converge to this periodic orbit with a specific phase. Until recently, such numerical phase resets were performed in an ad-hoc
fashion, and the development of suitable computational techniques was only started in the last decade or so. We present an approach
based on the continuation of solutions to a two-point boundary value problem that directly evaluates the phase associated with the
isochron that the perturbed point is located on. We illustrate this method with the FitzHugh–Nagumo model and investigate how the
resetting behaviour is affected by phase sensitivity in the system.

In certain physiological experiments, a perturbation is applied to an oscillator, and one is interested in how the dynamics
relaxes back to its regular rhythm [3, 12]. The resulting phase-shift is known as a phase reset, and recorded in terms
of a phase response curve (PRC) or amplitude response curve (ARC); these are obtained by varying the phase at which
the reset is applied, or by varying the amplitude of the reset when applied at a fixed given phase, respectively. Phase
resets give insight into the underlying dynamics of biological oscillator, such as circadian clocks, yeast cells, and the cell
cycle [12].

Mathematically, the oscillator is an attracting periodic orbit. Points on the periodic orbit have a relative phase, and any
point in the basin of attraction can similarly be assigned an asymptotic (or latent) phase, defined as the phase with which
the point converges to the periodic orbit [11]. The set of all points with the same asymptotic phase forms a manifold, called
an isochron, and the family of isochrons foliates the basin of attraction [5]. Theoretically, a PRC or ARC can be computed
by determining the phases of the isochrons that are associated with the reset points. In practice, this idea has proved to
be rather challenging. Traditionally, ad-hoc model simulation has been applied [2, 4, 11]. Recently, more accurate tech-
niques have been developed for the computation of isochrons, which are amenable for isochrons of systems that exhibit
strong or even extreme phase sensitivity in possibly large regions of phase space; see [8] and references therein. Con-
sequently, there are now also much better algorithms for the computation of PRCs, ARCs, and other resetting curves [6, 9].

Our method [10] computes one-dimensional isochrons of planar systems by pseudo-arclength continuation of solutions
to a suitable boundary value problem (BVP). It has the advantage that it can generate very accurate approximations of
isochrons globally, over a very large part of phase space. We adapt this method here so that we can generate PRCs or
ARCs also with a BVP approach; we use the package AUTO [1] throughout to obtain solution families of the respective
BVPs. The BVP that defines a phase reset consists of four orbit segments that are related via boundary conditions. Each
orbit segment is a solution to the vector field given in the form

d
dsu = T f(u),

where f : R2 → R2 defines the original vector field and time is rescaled to time s measured in units T of total integration
time of the respective orbit segment. Hence, T is treated as a parameter.

The first two orbit segments define the periodic orbit Γ := {u(s) ∈ R2 | 0 ≤ s ≤ 1}, with period TΓ, and its associated
vector bundle v := {v(s) ∈ R2 | 0 ≤ s ≤ 1} of the stable Floquet multiplier of Γ; each vector v(s) is tangent to
the isochron associated with the point γϑ ∈ Γ such that γϑ = u(s). For both orbit segments, the parameter T is set to
the period TΓ of Γ. Instead of imposing a phase condition—which would be necessary if one wants to continue Γ in a
parameter—we allow the head point u(0) = u(1) on Γ to vary; in other words, u(0) is not necessarily equal to the point
γ0 ∈ Γ with phase 0. We keep track of the phase that corresponds to a shifted head point u(0) by way of a third orbit
segment w := {w(s) ∈ R2 | 0 ≤ s ≤ 1} that starts at w(0) = u(0) and ends at w(1) = γ0. For numerical reasons, the
end condition for w is relaxed so that w(1) is allowed to differ from γ0 in the direction of its (linearised) isochron. The
total integration time for w is measured in fractions of TΓ, that is, we set T = ν TΓ for this orbit segment. The fourth and
final orbit segment defines the orbit segment p := {p(s) ∈ R2 | 0 ≤ s ≤ 1} of a reset point p(0) converging back to Γ.
Its total integration time is an integer multiple of TΓ and its end point is p(1) = u(0) + η v(0), for some small parameter
0 < η � 1; here, v(0) has length 1.

The PRC is then found by continuation in ν as the variation in phase ϕ = 1 − ν, while p(0) traces the path of a shifted
periodic orbit; the ARC is defined similarly by setting p(0) = γϑ + Ad and varying the reset amplitude A, where d is a
reset direction.



ENOC 2020, July 5-10, 2020, Lyon, France

−2 0 2

0

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
y

x

Γ

γ0

γ0.6

(a)

ϕ

A

(b)

Figure 1: Phase-resetting for the FitzHugh–Nagumo system (1) where a reset is applied in the direction d = (1, 0)t from the point
γ0.6 ∈ Γ with varying amplitude A ∈ [0, 0.75]. Panel (a) shows Γ with its isochrons plotted on a colour gradient from cyan at phase 0
to dark blue at phase 1; the purple curve indicates the A-dependent reset. Panel (b) shows the resulting phase ϕ = 1− ν versus A.

As an example, we consider the two-dimensional FitzHugh–Nagumo system, which is the iconic polynomial model for
which Winfree found that it exhibits extreme phase sensitivity due to its slow-fast nature [12]. The model is given as{

ẋ = c
(
y + x− 1

3 x
3 + z

)
,

ẏ = − 1
c (x+ a− b y),

(1)

where we fix z = −0.4, a = 0.7, and b = 0.8 as in [12], but set c = 2.5. For these parameter values, there exists an
attracting periodic orbit Γ with period TΓ ≈ 10.71. We define the point with zero phase as the point γ0 ∈ Γ that has a
maximum with respect to the x-coordinate; this point is γ0 ≈ (1.94, 0.89).

Figure 1(a) shows Γ together with its isochrons; the isochron associated with γ0 is coloured cyan and the other isochrons
are similarly coloured on a colour gradient from cyan to dark blue. We apply a reset to the point γ0.6 that lies on Γ at
time 0.6TΓ further along from γ0. The reset is in the horizontal direction d = (1, 0)t, and we vary its amplitude A in the
interval [0, 75]; see the purple line in Figure 1. Hence, γ0.6 is reset to the point γ0.6 + Ad and we compute the ARC as
the corresponding A-dependent asymptotic phase ϕ = 1− ν of the reset point γ0.6 +Ad.

Figure 1(b) shows the computed ARC as ϕ against A. Note that the A-parametrised line of reset points passes through
a region with extreme phase sensitivity [7]. Consequently, the ARC becomes near vertical in this region, which lies ap-
proximately at A = 0.42. Our numerical continuation set-up has no trouble traversing such a phase-sensitive region and
the ARC can be obtained reliably and efficiently even if it has a near-vertical derivative; note also the discontinuity at
A ≈ 0.67, where ϕ jumps from 1 to 0.
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