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An extreme time-periodic oscillator.
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Summary. Parametric instabilities are dynamical instabilities possibly arising when the mechanical state of a structure is periodically
modulated in time. It is sometimes seen as a phenomenon to avoid for example with sailing ships (parametric rolling) but it can also be
exploited to study vibrating fluids (Faraday waves [1]) or Nano-Electro- Mechanical Systems [2]. One well-known limitation in fully
exploiting classic parametric instabilities based on small periodic modulation of a mechanical state is that inherent friction forces rapidly
cancel sub harmonic parametric resonances. To overcome this drawback, we propose to "extremely" modulate the mechanical state of
the system in order to enhance parametric instabilities and therefore allow for new promising dynamic functionalities. This original
way of enhancing and controlling parametric instabilities is illustrated here through the numerical and experimental implementation of
an electromagnetic pendulum. We find that it is possible to greatly enhance the number of sub harmonic instability regions and also
that the width of these regions can be controlled.
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Experimental system under study

Our goal is to periodically vary a mechanical system between two very different states in order to enhance parametric
instabilities, even in the presence of classic internal friction forces. For illustrative purposes, we set up in the lab the proof
of concept shown in Fig.1a). The experiment consists of a magnetic pendulum that is symmetrically placed between
two attracting electromagnets. When the electromagnets are off, the system is a simple pendulum characterized by a
natural frequency ω0 ≈ 9 rad/s as illustrated in the experimental plot of Fig.1c). When turning the electromagnets on
through an electrical current I , the state of the pendulum can be drastically modified. In our example of Fig.1, when the
control parameter I is slightly below Imax, our system is naturally oscillating with a slower natural frequency. Above
I = Imax, our system is no more oscillating but diverging: attracted to the right or left electromagnet depending on the
imperfections in our experiment. This mechanical system is therefore a simple first realization of what we coined an
extreme parametric oscillator: with a single parameter, in this case I , we are drastically and easily changing the state
of our system. In classical parametric oscillators, this extreme modulation is hardly reachable because the geometrical
mechanical modulation parameters that come into play (the length of the pendulum or the effective gravity for example)
are not easily varied on such scales [1][2].

Figure 1: The electromagnetic parametric oscillator under study. a) A pendulum whose mass is made of steel, is symmetrically placed
between two identical attracting electromagnets that are periodically turned on (red energy states in b)) and off (blue energy states in
b)). b) Simplified "Particle in a time-varying potential well" model. c) Evolution of the natural frequency of the pendulum for various
value of the electrical current I in the two electromagnets when the laters are separated by L = 6 cm. Below I < Imax, the pendulum
is naturally oscillating if perturbed. Eventually, for I close to the diverging limit Imax , the natural frequency goes down. Above Imax

the mass is no more oscillating but diverging.

To investigate the dynamic behavior of our extreme parametric oscillator, we periodically turn the electromagnets on or off
with a period T , in a square wave fashion making the system modulate bewteen two states (see Fig.2a)). Fig.2b) represents
the experimental stability diagram of the pendulum in the modulation parameter space (T, I). For some (T, I), the system
is dynamically stable (blue triangles), i.e. the pendulum is slightly vibrating (because of small imperfections) but stays
close to the trivial vertical state. The crosses indicate the modulation parameters for which the mass was parametrically
unstable, i.e. dynamically impacting the electromagnets. The color legend indicates the number of cycles the pendulum
is doing in the emerging nonlinear vibrational regime. Modes with an integer number of M represent T -periodic unstable
regions when the other M numbers represent 2T unstable regions. At relative low modulation amplitude, I < 1 A,
the pendulum is often stable, except eventually for the first or second parametric instability regions. For "extreme"
modulation amplitude such as I ≈ Imax, it is possible to trigger highly sub-harmonic instability regions, here up to the
58th instability region (M = 29) when the current record demonstrated in a micro electromechanical device is found to
be the 28th instability region [2].
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Figure 2: a) The electromagnets are turned on and off in a square wave fashion with period T . The amplitude of modulation is the
electrical current I when the electromagnets are on. b) Experimental stability chart of the pendulum in the modulation parameter space
(T, I). Blue triangles represent stable states where the mass stays close to the middle of the electromagnets. Crosses represent unstable
states where the pendulum dynamically diverges and eventually impact the electromagnets.

Model of an extreme time-periodic oscillator

The aforementioned experimental mechanical system can be seen as a non-damped pendulum that oscillates periodically
between a natural frequency ω0 and ωexp following a square wave function. Based on the theoretical study of the Meissner
equation[3] a linear theoretical model for the stability of the vertical pendum can be obtained:

θ̈(τ) +
(
α2 + β2sgn(cos(τ))

)
θ(τ) = 0 (1)

with α2 and β2 two dimensionless parameters. Fig.3 represents the stability of Fig.2b) represented in the analytical space
(α2, β2). With this experimental setup we are able to observe extreme periodic instability for the first time ( large values
for α2 and β2). For small values of α2 and β2 the model represents correctly the evolution of the experimental system.
The alternation between stable and unstable analytical regions shows a good agreement with those found experimentally.
In conclusion it is possible to trigger extreme parametric oscillations experimentally and to develop a corresponding linear
theoretical model. This new approach could be promising for very large-band energy harvesting devices.

Figure 3: Analytical stability chart with experimental results presenting several instability regions. The numerical results represent the
evolution of the real part of the Floquet exponent of equation (1) [4]. If it is equal to zero than the movement of the system is stable.
Values larger than zero mean the solution of the system increases exponentially so the system is unstable. The blue triangles correspond
to the experimental stable states and the red crosses correspond to the unstable ones. The red curve (α2 = β2) represents the limit
between systems that are naturally stable and systems naturally unstable (over the limit).
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