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Summary. The present work addresses passive suppression of vibrations induced by internal axial flow in a cantilevered flexible
pipe discharging fluid. The suppressor utilized is a rotative non-linear vibration absorber (NVA) composed of a mass connected to the
extremity of a rigid bar hinged to the main structure by means of a dashpot. Numerical results from the mathematical model show that
the NVA is able to bound the pipe structural response even in the supercritical flow regime.

Introduction
Today, the problem of a cantilevered pipe conveying fluid is considered as a classical problem in the study of the dynamics
and stability of structures because of its simplicity and potential for displaying a wide range of complex dynamics. This
problem belongs to a broader class of open dynamical systems with axial momentum transportation, and several studies,
such as [1] and [2], have been made on the extension of Euler-Lagrange’s equations and Hamilton’s principle for such
systems. Pipes conveying fluid, in their myriad of applications, such as heat exchangers and risers are susceptible to
flow-induced instabilities and vibrations which in turn can lead to fatigue failure, excessive noise and leaks.
Non-linear vibration absorbers (NVAs) have been studied in the last decades as alternatives to linear suppressors, such as
the tuned mass damper (TMD), for passive suppression of oscillations. Even though the literature on the use of NVAs for
suppressing axial-flow-induced vibrations is recent, studies have shown that they are capable of adapting and effectively
operating even if the load is broadbanded due to an energy transferring concept called Targeted Energy Transfer (TET),
as documented in [3] and [4].
This paper focuses on the use of a particular class of suppressors, called rotative NVA, with the objective of suppressing
axial-flow-induced vibrations of cantilevered pipes discharging fluid. Such a suppressor is composed of a point mass
connected to the extremity of a rigid bar which, in turn, is hinged to the pipe via a dashpot. In [3], the authors discuss
passive suppression of internal-flow-induced oscillations of a pinned-pinned pipe using a different type of NVA. To the
best of the authors’ knowledge, the use of a rotative NVA for suppressing axial-flow-induced vibrations of pipes conveying
fluid has not been previously addressed and is the main novelty of the present work.

Mathematical model
Consider a flexible pipe discharging fluid as shown in Fig. 1a. The pipe has the length L, the diameter D, the bending
stiffness EI and the mass per unit length m. The fluid has the mass per unit length M and flows at a constant velocity
U . At a point x̄ along the pipe length, the NVA is placed and constrained to rotate in the (y, z)-plane. The device has the
mass mn, the radius r and the damping constant c. The pipe transverse displacement is represented by w(x, t) while the
angular displacement of the NVA is θ(t). It is assumed that the pipe is inextensible and that the flow is incompressible
and has a uniform profile in the pipe (i.e. the plug flow model). By using the extended Hamilton’s principle found in [5],
the dimensional equations of motion can be found and are made dimensionless using the following quantities:

τ =
( EI

m+M

)1/2 t

L2
, ξ =

x

L
=
s

L
, η =

z

L
=
w

L
, γ =

(m+M)gL3

EI
, δ̂(ξ − ξ̄) = Lδ(x− x̄),
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where s is the curvilinear coordinate along the pipe length, and δ is the Dirac Delta function. The resulting dimensionless
partial differential equation is then discretized using Galerkin’s method, with the adoption of the first five mode shapes of
a cantilevered Euler-Bernoulli beam, i.e., η(ξ, τ) ∼=

∑5
n=1An(τ)ψn(ξ), where ψn are the mode shapes and An are the

corresponding generalized coordinates. Using the notation ( )′ = ∂/∂ξ and ˙( ) = ∂/∂τ , the final system of six coupled
second-order ordinary differential equations is obtained in the form of equations (2) and (3), for k = 1, ..., 5.

Results
Consider three different systems: system 1 is the unaltered (or plain) pipe, system 2 is composed of the pipe and a lumped
mass rigidly attached to the pipe at different spanwise locations and, finally, system 3 is the one with the NVA. System
2 allows for investigations into the effect of the placement of the stationary lumped mass on the critical flow velocity –
“static” effect – via Lyapunov’s Indirect Method. On the other hand, system 3 allows for investigations into the capability
of the device to mitigate vibrations of the main structure due to its motion with respect to the pipe, which locally dissipates
energy in the associated dashpot (TET mechanism). Here, passive suppression is achieved by a “dynamical” effect.
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Throughout this extended abstract, we assume β = 0.20 and γ = 10. An example of the analysis on the “static” effect
of the device is given in Fig. 1b, which shows the variation of ucl/uc (uc and ucl being the critical flow velocities for
systems 1 and 2, respectively) as a function of the lumped mass value and its location. As seen, counter-intuitively,
the lumped mass has a destabilizing effect with the exception of the region approximately defined by ξ̄ ∈ [0.35, 0.65]
and m̂n ∈ [0.025, 0.2], in which the critical flow velocity ratio ucl/uc increases as m̂n is increased. For system 3, the
“dynamical” effect is then evaluated through a numerical integration of the equations of motion at u = ucl, which leads
to unbounded responses of system 2. Considering A1(0) = 0.1 and θ(0) = 0.1 as the non-trivial initial conditions, Fig.
3c presents the time-history of the displacement at the free end of the pipe, i.e. η(ξ = 1, τ), the associated amplitude
spectrum and the angular response of the NVA, θ(τ), for the case in which the suppressor is placed at ξ̄ = 0.5 and is
characterized by m̂n = 0.01, ĉ = 0.2 and r̂ = 0.6. Both time series are shown within τ ∈ [2000, 4000] range. Note that
the response is bounded, even though for a supercritical internal flow velocity for system 2.
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Figure 1: a) Schematic drawing of the system, b) (ucl/uc) as a function of (m̂n; ξ̄) - System 2, c) Example of response - System 3.

From Fig. 3c, a strongly modulated response composed of two intermittent regimes can be observed. The first regime is
characterized by a growth in the pipe response, while the device oscillates around the positions that are aligned with the
pipe motion, i.e. where cos θ = ±1. Then, when the energy reaches a certain threshold, the NVA rotates with practically
the same frequency as the oscillation frequency, that is f̂ = 2.37. Hence, we may conclude that the observed passive
suppression is associated with a 1 : 1 resonance.

Conclusions
A rotative NVA was utilized to successfully mitigate vibrations of a cantilevered flexible pipe discharging fluid. Both the
“static” and “dynamical” effects were examined. While the former showed to have an important role in the stability of
the system (i.e., the critical internal flow velocity), the latter was responsible for bounding the dynamical response due to
energy dissipation. More numerical results along with a more comprehensive analysis of the static and dynamic effects
will be presented in the full-length paper.
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