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Summary. In development since 2007, the MATLAB-based, object-oriented, software platform COCO provides general-purpose sup-
port for construction of nonlinear constraints and, in applications to optimization, the corresponding adjoint conditions. COCO atlas
algorithms implement continuation strategies that grow constraint manifolds successively from an initial solution guess. Until recently,
an alpha implementation in COCO of the multi-dimensional MULTIFARIO package in the atlas-kd atlas algorithm was unable to han-
dle problems with changing dimension and/or interpretation of variables and constraints, e.g., boundary-value problems with adaptive
meshes. This paper describes a recent upgrade to the atlas-kd atlas algorithm that not only provides a resolution to this conundrum,
but makes problem-dependent implementation straightforward and consistent with the existing COCO paradigm for construction of
constraints and monitor functions. Here, in lieu of a definition of an inner product on an underlying infinite-dimensional vector space,
the manifold geometry is characterized using the Euclidean inner product on a suitably-defined finite-dimensional projection. Sev-
eral examples are considered from the theory of periodic orbits in autonomous and periodically-excited nonlinear dynamical systems.

Fundamentals

The trajectory collocation problem
Following [1], consider the autonomous differential equation ẏ = f(y, p) on the interval [0, T ] for some positive real
number T . Here, the vector field f : Rn×Rq 7→ Rn is parameterized by a vector of problem parameters p ∈ Rq . Choose
the integers N and m and the sequence {κj}Nj=1 such that

∑N
j=1 κj = N . Let u =

(
υbp, T, p

)
∈ RNn(m+1)+1+q , where
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and j ranges from 1 to N . Then,
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)
υ(m+1)(j−1)+i (2)

is a candidate approximant for y(t) on the interval T
N

(∑j−1
k=1 κk + [0, κj ]

)
for every j = 1, . . . , N . Here, Li is the i-th

Lagrange polynomial of degree m defined on the uniform partition of [−1, 1]. We obtain a system of (N − 1)n+Nnm
nonlinear equations by imposition of continuity on ỹ and the collection of collocation conditions
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for j = 1, . . . , N and l = 1, . . . ,m, where zl is the l-th root of the Legendre polynomial of degree m on the interval
[−1, 1]. Provided that a solution u∗ to these equations is regular, there exists an n+ q + 1-dimensional manifold through
u∗ so that every local solution lies on this manifold. The imposition of up to n+ q+1 additional constraints (satisfied by
u∗) then reduce consideration to lower-dimensional submanifolds of the original solution manifold. The conditions

υ1 − υN(m+1) = 0 = υ̃> · υbp (4)

for some suitably constructed υ̃ reduce consideration to a local q-dimensional manifold of periodic orbits.

Continuation with a variable mesh
The periodic-orbit problem in the previous section is characterized by the integers N and m, corresponding to the number
of mesh intervals and polynomial degree, respectively, the sequence {κj}Nj=1 of scaled interval widths, and the reference
discretization υ̃, all of which may change during analysis of the collection of solutions obtained for different values of the
problem parameters p. Indeed, υ̃ is usually updated before each new solution is sought, using a discretization υbp from a
previously located, nearby solution. Similarly,N and {κj}Nj=1 (and, less often,m) may be updated every so often in order
to satisfy a desired error tolerance. Each such choice restricts attention to a particular variable space, with its unique inter-
pretations and numbers of problem variables and problem constraints (but identical manifold dimension). As long as one
is not concerned with global comparisons between solutions obtained at different stages of the analysis, sequences of solu-
tions may be generated iteratively through a predictor-corrector framework as implemented in an atlas algorithm, wherein
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interpolation is used by the predictor to accommodate changes to N or {κj}Nj=1. When global comparisons are of con-
cern, as is the case for closed one-dimensional manifolds and all manifolds of dimension ≥ 2, these may additionally be
implemented on the approximant ỹ rather than on the problem discretizations (cf. [2]). Alternatively, as proposed recently
in [3], comparisons may be performed in a projected space in terms of invariantly defined solution properties, sufficient
in number to ensure a regular embedding of the solution manifold for the underlying infinite-dimensional problem.

A software implementation

The COCO (https://sourceforge.net/projects/cocotools/) software development originates in an effort to provide general-
purpose, problem-independent support for i) the construction of composite continuation problems (i.e., decomposable into
glued-together subproblems with an excess of unknowns relative to the total number of constraints) without concern for
the sought manifold dimensionality, and ii) the subsequent analysis of the solution manifold for a given choice of dimen-
sion. COCO’s construction paradigm allows for solution properties to be defined in terms of subsets of problem variables
defined at different stages of construction, for example, the difference between the periods of the individual solutions
to two coupled periodic-orbit problems. For variable-mesh problems, such solution properties are said to be invariantly
defined if they correspond to a discretized evaluation of a property of the solution to the underlying infinite-dimensional
problem, e.g., the mean of a variable or the magnitude of a complex-valued Fourier coefficient. In a recent upgrade to
COCO, an implementation of the MULTIFARIO (https://sourceforge.net/projects/multifario/) package for multi-dimensional
continuation [4] in the atlas-kd atlas algorithm that previously offered no support for variable-mesh continuation prob-
lems now provides such support, independently of the nature of the original problem. This functionality is achieved by
performing global comparisons in a projection onto a finite-dimensional Euclidean space in terms of invariantly defined
solution properties that may be constructed solely in terms of individual discretizations. As an example, Fig. 1 depicts the
two-dimensional frequency-amplitude response surface of a hardening Duffing oscillator obtained with atlas-kd by
performing all global comparisons in the five-dimensional projection onto the excitation period T , excitation amplitude
A, first-harmonic Fourier coefficients (scaled by T/2), and first-harmonic Fourier amplitude |c1| (scaled by T/2).

Figure 1: Two-dimensional frequency-amplitude response surface for a hardening Duffing oscillator.

Conclusions

The COCO construction paradigm provides general-purpose support for the definition of small numbers of solution prop-
erties that can be used for detecting special points during continuation. Remarkably, the same functionality supports a
low-complexity approach for multi-dimensional continuation of variable-mesh boundary-value problems without requir-
ing a user-defined inner product in terms of pairs of discretizations with different interpretations and numbers of problem
variables and constraints. The COCO-compatible atlas-kd atlas algorithm implements this new paradigm with only
minimal modifications to the algorithms inherited from MULTIFARIO.
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