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Summary. This paper presents bifurcation study of piecewise smooth differential delay equations (PWS-DDEs) where the state
variable determines which differential delay equation is active. This paper aims to add to the existing research performed on bifurcation
studies of PWS-DDEs by developing an algorithm to perform bifurcation studies of a general form of PWS-DDEs, such that it can
be used for any bifurcation study of a PWS-DDEs system. Bifurcation studies are performed using a simplified model of a controlled
inverted pendulum to study the effect of parameters. During the bifurcation studies, new type of bifurcations that arise for PWS-DDEs
are defined.

Introduction

The ability to predict the stability of periodic behavior can be of importance in the research into for instance Parkinson [2]
or other balance disorders. Methods to determine periodic solutions for differential delay equations (DDEs) or piecewise
smooth (PWS) systems are well described. To find periodic solutions of DDEs the collocation method is often used
[3, 4, 5, 6]. In [1] the collocation method as used for DDEs is extended such that it is able to find periodic solutions of
PWS-DDEs.This paper presents bifurcation studies of a general form of PWS-DDEs. We study the influence of smooth
switching manifold on the parametric bifurcations for a controlled inverted pendulum. Bifurcation studies are presented
for systems with smooth switching manifolds using the algorithm developed.

Model

The state space model of the inverted pendulum is given by[
ẋ1
ẋ2

]
=

[
x2(t)

sinx1(t)− x2(t)− u(x(t− τ))

]
(1)

where x1 := θ and x2 := θ̇, where θ is the angle and u is a torque determined by a controller. Delays in for instance the
sensors or computational delays are modeled by using the delayed values of the angle and angular velocity to determine
the torque u.The parameters (mass, length, and damping coefficient) in this model are scaled to unity.Some studies suggest
that central nervous system uses control switching strategies that deactivate the controller in certain (stable) subspaces of
the state space, to minimize control effort [7]. The switching strategies are a function of these delayed values, hence one
way to describe the control input on the system can be:

u(x(t− τ)) =

{
0 when x(t− τ) ∈ χunctrl

Kpx1(t− τ) +Kdx2(t− τ) when x(t− τ) ∈ χctrl

(2)

with χunctrl

⋃
χctrl = R2, with Kp and Kd the proportional and derivative gain, respectively. The switching strategy

studied here is to only control the system if magnitude of the angle is large. The subspaces χunctrl = {x ∈ R2| |x1| ≤ e}
and χctrl = {x ∈ R2| |x1| > e} define this switching strategy where e is the value of |θ(t − τ)| which defines the
switching plane.

Bifurcation studies

A bifurcation study along parameter Kp is performed to study the effect of switching manifold. The bifurcation behavior
is characterized by appearance of topologically nonequivalent phase portraits under variation of the parameter µ. The
bifurcation studies are performed using the switching plane with e = 0.1. The parameters of the model are Kp = 2,
Kd = 1 and τ = 0.5, if not mentioned differently. The bifurcation diagram along the bifurcation parameter Kp is
depicted in Figure 1. The whole branch consist of stable periodic solutions and the unstable equilibrium point at the
origin. The evolution of a branch at Kp = 1 is given in Figure 2. Due to the sudden periodic solutions that originate
similar to a Pitchfork bifurcation this phenomena will be referred to as the Pseudo-pitchfork bifurcation. There are two
differences between pseudo-pitchfork bifurcation and the pitchfork bifurcation:the periodic solutions do not originate
from the main branch and stability along the main branch does not change at the bifurcation point. For phase portrait C in
Figure 1 one side has a stable periodic solution, and the other side there are two stable periodic solutions and on each side
of the bifurcation point the solutions are stable. To study the behavior that causes the bifurcation, a section of the whole
branch around the bifurcation point is depicted in Figure 3. In this case, for µ < µ0, with µ0 the bifurcation point, there
is one unstable equilibrium one periodic solution, and for µ ≥ µ0 there is still one unstable equilibrium and two stable
periodic solutions. This is called an X-bifurcation. The most challenging part of these studies is an inherent inability to
capture all bifurcations at any critical point due to an inherent numerical approach and this remains part of future work
for authors.
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Figure 1: Bifurcation diagram along parameter Kp with the magnitude switching manifold

Figure 2: Evolution of periodic solutions close to Pseudo-pitchfork bifurcation

Figure 3: Evolution of periodic solutions close to X-bifurcation

Conclusions

Two new bifurcations are observed for the system using a smooth switching control strategy for a PWS-DDE system.
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