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Summary. We study steering of a linear chain of point masses connected via springs to the equilibrium, by means of a bounded force
applied to the first mass in the chain. In other words, we design an explicit feedback control that bring the system to a given terminal rest
state in a finite time. Thus, we prove the complete controllability of the system, and describe explicitly the feedback control proposed.
Then, we show its robustness with respect to unknown disturbances.

The chain of n oscillators: Problem statement

We consider a control problem for a system representing a solid body carrying a chain of n linear oscillators modelled by
point masses connected via springs (Fig. 1). The whole system moves along a horizontal line under the action of a control
force and an external disturbance applied to the carrying body.

Figure 1: A body carrying the chain of oscillators

Equations of motion have the form

m0ẍ0 = −k1x0 + k1x1 + u+ v

miẍi = kixi−1 − (ki + ki+1)xi + ki+1xi+1, i = 1, . . . , n− 1

mnẍn = −knxn−1 + knxn

(1)

Here, we have the controllable mass m0, which is subject to control u, and disturbances v. Each mass mi, i = 0, . . . , n
has coordinate xi, and the Hooke law Fi = ki(xi − xi−1) gives the force from mass mi−1 to mi.
Assuming x = (x0, x1, . . . , xn), we can write (1) in the Cauchy normal form

ẋ = A1x+
1

m0
b(u+ v)

where A and b are the block matrices
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)
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
, e =


1
0
...
0



and I is the unit matrix.
We assume that we know the current values x0, ẋ0, x1, while the other coordinates are not directly observable. Therefore,
a measured output is

y = Dx, D =

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0


Theorem 1 Pair (A1, b) is controllable and the pair (A1, D) is observable.

Thus, we can in principle bring the system under consideration to any given state, at least if the disturbances are absent.
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Control of canonical systems

The control problem stated can be reduced [1, 2] to the control problem for canonical system

ż = Az +B(u+ v) (2)

where

A =


0 0 0 . . . 0
−1 0 0 . . . 0

0 −2 0
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −2N − 1 0

 , B =


1
0
...
0

 , z, B ∈ R2N+2 (3)

We use matrices

qij =

∫ 1

0

xi+j−2(1− x)dx =
1

(i+ j)(i+ j − 1)
, i, j = 1, . . . , 2N + 2

Q = q−1, C = −1

2
BTQ, δ(T ) = diag{T−1, T−2, . . . , T−2N−2}

Note, that for the scalar control system (2),(3) the matrix C is a row-vector C = (C1, . . . , C2N+2).
This allows to define the canonical feedback control by

u(z) = Cδ(T (z))z

which takes the form
u(z) =

C1

T (z)
z1 +

C2

T 2(z)
z2 + · · ·+

C2N+2

T 2N+2(z)
z2N+2 (4)

in the scalar control case. The function T (z) is found from the equation

〈Qδ(T )z, δ(T )z〉 = 1 (5)

Theorem 2 (see [2])

A) Equation (5) define positive T = T (z) uniquely.

B) The control (4) is bounded: |u| ≤ 1
2

√
N(N + 1).

C) If there are no disturbances, the control (4) brings state z to 0 in time T (z).

Theorem 3 If disturbances v satisfy

|v| ≤ c < 1

2
√
N(N + 1)

the derivative of T satisfies inequality
Ṫ ≤ −σ, σ > 0

and control (4) brings state z to 0 in a finite time T = O(T (z)).
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