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Influence of fractional viscoelastic connecting layers on the response of a beam-mass
array exposed to motion of supports
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Summary. Herein the dynamic response of a system of fractional viscoelastic beams embedded in fractional viscoelastic medium
and excited by motion of their supports is analysed, and the influence of properties of the connecting medium, modelled as a set of
connecting layers, on the system behaviour is investigated. First, the approximate solution to the problem is obtained through the use
of the Galerkin discretisation, impulse response method, Fourier transform and Residue theory, and then it is applied to analyse, both
qualitatively and quantitatively, the influence of fractional-order derivative model parameters on the dynamic properties of beam arrays.

Introduction

There are many possible mechanical and engineering applications of systems of cantilever beams connected into an array
and excited by motion of their supports, particularly for vibration attenuation and energy harvesting purposes [1]. One type
of such systems, where cantilever beams are embedded in fractional viscoelastic medium, which is modelled by a set of
light viscoelastic layers, and placed inside a moving container, is the subject of this study, and it is schematically depicted
in Fig. 1. Dynamics of beam arrays with elastic and viscoelastic properties has already been investigated, e.g. [2]. There
has also been some research regarding the fractional-order derivative viscoelastic systems (e.g. [3]), but these solutions are
applicable only for rational derivative orders. Freundlich [4] recently presented the exact solution for the dynamic response
of a single cantilever with a tip mass under transverse motion of the support, while the beam material was modelled with
damping of an arbitrary order of fractional derivative. In our recent study, we have obtained an approximate solution to
the problem of vibration of a system of fractional viscoelastic cantilevers, connected by a fractional viscoelastic layers and
excited by transverse motion of the support, where the fractional derivatives of arbitrary order were used. In the herein
presented paper, this solution procedure is briefly described, and then it is applied to analyse the previously mentioned
array of connected cantilevers confined in a transversally moving container, schematically presented in Fig. 1, in order to
determine the influence of the connecting layers’ material properties on the dynamic response of the system.

Mathematical model and the approximate solution to the considered problem

A system of Nb fractional viscoelastic Euler-Bernoulli cantilever beams embedded in fractional viscoelastic medium and
confined inside a transversally moving container, as presented in Fig. 1, is analysed. Each beam is of length L and carries
Nm(k) concentrated masses m(k)p

attached at xm(k) ∈ (0, L), p = 1, 2, . . . , Nm(k), k = 1, 2, . . . Nb . Beams can have
mutually different mass density ρk, cross sectional area Ak, moment of inertia Ik and relaxed elasticity modulus Ek, but
they have the same fractional derivative order α and retardation time τ1. The medium is modelled as a set of connecting
layers, with prolonged compliance coefficient κ, fractional derivative order β and retardation time τ2 being the same
throughout the system. Here we will use only the left Riemann-Liouville fractional derivative of order γ as defined in [5],
here denoted by Dγ(•) ≡ (•)(γ), γ ∈ (0, 1). The container moves transversally, following an arbitrary function ws(t).
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Figure 1: Schematic representation of the considered mechanical system

For the k-th beam of the system (k = 1, 2, . . . , Nb ), the equation of motion for transverse beam displacements w(k)(x, t)
and the corresponding boundary conditions (BCs), noting that w(0) = w(Nb+1) ≡ ws, can be formulated as

EkIk(1 + τα1 D
α)w′′′′(k) +

ρkAk + Nm(k)∑
p=1

m(k)pδ(x− a(k)p)

 ẅ(k) − κ(1 + τβ2 D
β)(w(k+1) + w(k−1))+

+ 2κ(1 + τβ2 D
β)w(k) = 0 ; BCs : w(k)(0, t) = ws(t), w′(k)(0, t) = w′′(k)(L, t) = w′′′(k)(L, t) = 0

(1)
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The solution procedure and the influence of the connecting layer properties
In order to homogenise the BCs, the absolute displacements are decomposed into the rigid body motion part and the
displacements relative to the supported beam end - w(k)(x, t) = ws(t) + v(k)(x, t). Then, the relative displacements are
approximated by the Galerkin weighted residual method as v(k)(x, t) ≈

∑n
i=1 φ(k)i(x)q(k)i(t) , k = 1, 2, . . . , Nb, with

the bare beam mode shapes used as the trial functions and the weighting functions. This leads to a system n×Nb coupled
fractional-order differential equations which can be expressed in matrix form as

Kq + Cαq(α) + Cβq(β) + Mq̈ = Q (2)

where K, Cα, Cβ and M are the stiffness matrix, beam material damping matrix, connecting layer damping matrix
and mass matrix of the whole system, respectively, and q and Q are the vector of the yet undetermined time functions
and the vector of the inertial forces in the whole system. The unknown time functions qT = {q1,q1, . . . ,qNb

} =
{q(1)1, q(1)2, . . . , q(1)n, q(2)1, . . . , q(N)n

} will be determined by first finding the system impulse response g, where g is
the vector of n×Nb corresponding Green functions Gi(t), i = 1, 2, . . . , n×Nb.
The impulse response is determined by taking the Fourier transform of the system and then using the equivalent elastic sys-
tem to obtain the decoupled system of equations, assuming relatively small damping. This leads to (almost) diagonalised
system matrices, i.e. a system of n×Nb decoupled polynomial algebraic equations with fractional exponents:

s2r + Cdαrrs
α
r + Cdβrrs

β
r + ω2

r = 0 , r = 1, 2, . . . , n×Nb (3)

where s = ıω, with ω2
r = Kd

rr/M
d
rr being the r-th undamped system frequency, and Cdαrr, C

d
βrr, K

d
rr, M

d
rr are the

r-th diagonal elements of the corresponding diagonalised matrices. After finding the roots of each of these equations,
the inverse Fourier transform is applied with the use of the Residue theory, and the Green functions are again coupled to
obtain the impulse response of the original system. Once the impulse response is determined, the sought time functions are
obtained by taking the convolution with the inertial forces of the system qi(t) =

∫ t
0
Gi(t− τ)Qi(τ)dτ , i = 1, 2, . . . , n×

Nb, thus providing the complete (approximate) solution to the considered problem. The influence of the connecting layer
material properties was investigated on a system of Nb = 3 cantilever beams with Nm(1) = 2, Nm(2) = 1, Nm(3) = 3
equidistantly attached masses of half of each beam’s weight. Geometrical and material properties of each beam were
adopted the same as in [4], with τ1 = 0.001s, α = 0.8. The container was set to follow the motion function ws(t) =
w0 sinωst

2, with w0 = 1mm, ωs = 10s−1. The parameters τ2, β and κ were varied, and their influence on the relative
displacements of the free end of the first beam in the array are presented in Fig. 2.
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Figure 2: Influence of the connecting layer properties on the dynamic response of the system

Conclusions

It can be seen that the connecting layer greatly affects system behaviour. An increase in retardation time τ2 and order of
fractional derivative β of the connecting layer leads to a more rapid vibration attenuation, as shown in Fig. 2a) and b),
respectively, while an increase in the layer’s relaxed compliance coefficient leads not only to an increase in damping, but
in the fundamental system frequency as well, which causes the resonant state shift observed in Fig. 2c).

Acknowledgment
This research was supported by the Serbian Ministry of Education, Science and Technological Development (project
174001). D.K. was supported by the Marie Skłodowska -Curie Actions - European Commission: 799201-METACTIVE.

References

[1] Meruane, V., Pichara, K. (2016) A broadband vibration-based energy harvester using an array of piezoelectric beams connected by springs. Shock
and Vibration Article ID 9614842:1-13.

[2] Kelly, S. G., Nicely, C. (2015) Free Vibrations of a series of beams connected by viscoelastic layers. Adv. in Acoust. and Vib. Article ID 976841:1-8.
[3] Sorrentino, S. and Fasana, A. (2007) Finite element analysis of vibrating linear systems with fractional derivative viscoelastic models. Jnl. of Sound

and Vib. 299:839-853.
[4] Freundlich, J. (2019) Transient vibrations of a fractional Kelvin-Voigt viscoelastic cantilever beam with a tip mass and subjected to a base excitation.

Jnl. of Sound and Vib. 438:99-115.
[5] Rossikhin, Y., Shitikova, M. (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results.

Applied Mechanics Reviews. 63:010801.


