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Summary. We employ a Lin’s method set-up to compute a surface of heteroclinic connections between two saddle slow manifolds in
the four-dimensional Olsen model for peroxidase-oxidase reaction. As will be shown, this surface organises the return mechanism of
mixed-mode oscillations that involve a slow passage through a Hopf bifurcation.

We consider a model for peroxidase-oxidase reaction first introduced by Olsen [6], which we study here in the scaled
form presented in [4]; it is given as the system of ordinary differential equations

Ȧ = µ− αA−ABY,
Ḃ = ε(1−BX −ABY ),

Ẋ = λ(BX −X2 + 3ABY − ζX + δ),

Ẏ = κλ(X2 − Y −ABY ),

(1)

for the vector of chemical concentrations (A,B,X, Y ) ∈ R4. The system parameters are fixed here, as in [4], to
α = 0.0912, δ = 1.2121 × 10−4, ε = 0.0037, λ = 18.5281, κ = 3.7963 , µ = 0.9697, and ζ = 0.9847. For this
choice, the three concentrations A, X , and Y can be considered as fast and B as slow. System (1) has been of interest be-
cause it exhibits mixed-mode oscillations (MMOs), which are characterised by a mixture of small-amplitude oscillations
(SAOs) that usually arise locally in phase space and large-amplitude oscillations (LAOs) that are generally associated with
a global return to the region of SAOs. To date, mechanisms for MMOs are quite well understood in slow-fast systems of
dimension three; see, for example, the survey paper [5] as an entry point to the literature on MMOs. For four-dimensional
slow-fast systems, on the other hand, new mechanisms and types of MMOs may arise. The case study of the Olsen
model (1) presented here shows that the return mechanism of the MMOs involves heteroclinic connecting orbits between
two saddle slow manifolds. It follows on from earlier work in [1], where the same parameter regime was considered but a
model reduction to a three-dimensional system (via a quasi-steady-state assumption) was performed. In contrast, we now
consider and compute all relevant objects in the full (A,B,X, Y )-space of system (1).

In the spirit of geometric singular perturbation theory [3], we start with the limit of ε = 0 and consider the three-
dimensional fast subsystem for the fast variables A, X , and Y , where the slow variable B is now a parameter. The
equilibria of the fast subsystem, which are parametrised by B, form the critical manifold C in the (A,B,X, Y )-space of
system (1). A linear stability analysis shows that C consists (in the physically relevant region of positive A, B, X , and
Y ) of four branches of hyperbolic equilibria of the fast subsystem: a branch denoted C4

+ of stable equilibria; a branch C3

of saddle equilibria with one unstable eigenvalue; a branch C2 of saddle equilibria with two unstable eigenvalues; and a
second branch C4

− of stable equilibria. These branches connect at points F1 and F2 of fold bifurcation and H of Hopf
bifurcation, and the superscipts indicate the dimensions of their stable manifolds in (A,B,X, Y )-space.

Our specific interest is in the two branches C3 and C2 because they are saddle objects with different dimensions of stable
and unstable manifolds. While C3 and C2 only exist for ε = 0, according to Fenichel threory [3], they persist as locally
invariant slow manifolds S3 and S2 for sufficiently small ε > 0; note that orbit segments on a slow manifold remain
slow for O(1) time. Moreover, the one-dimensional manifolds S3 and S2 lie O(ε) close to C3 and C2, and they have
stable and unstable manifolds of the same dimensions as those of C3 and C2. Hence, S3 has a three-dimensional stable
manifold W s(S3), consisting of orbit segments that, in forward time, approach S3 along a fast direction and then remain
slow while following S3; similarly, S2 has a three-dimensional unstable manifold Wu(S2) consisting of orbit segments
that, in backward time, approach S3 along a fast direction and then remain slow while following S3.

The two three-dimensional objects W s(S3) and Wu(S2) are expected to intersect generically in a two-dimensional sur-
faceH of connecting orbits between S3 and S2; in forward time, any such connecting orbit first slowly follows the curve
S2, makes a transition across to the curve S3, and then follows it slowly. In order to find H, we use two ingredients:
firstly, we adapt the technique in [2] for the computation of one-dimensional slow manifolds and their (un)stable man-
ifolds to the four-dimensional setting of system (1) and, secondly, we employ a Lin’s method approach [7] to define
two orbit segments, in W s(S3) and Wu(S2), respectively, that have end points in a chosen three-dimensional section.
Closing the gap between them along a specified direction, by continuation of solutions to an overall boundary value prob-
lem, allows us to find a first heteroclinic orbit, which is then swept out in a further continuation run to obtain the surfaceH.

Figure 1 shows the two-dimensional surface H in projection onto the three-dimensional (B,A,X)-space of system (1),
together with the critical branches C4

+ , C2, C4
− and C3. Notice that H spirals out from the saddle branch C2 and then

approaches the saddle branch C3 in a non-spiralling fashion; here, S2 and S3 (not shown) are indistinguishably close to
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Figure 1: Three-dimensional projection onto (B,A,X)-space of the MMO periodic orbit Γ and the surface H = W s(S3) ∩Wu(S2)
(red-blue faded) of system (1) for ε = 0.0037, shown in relation to the following objects for ε = 0: the curves C4

+ (black), C2 (dashed
raspberry), C4

− (black) and C3 (dashed teal) of the critical manifold; the fold point F1 (orange dot) and the Hopf bifurcation point H
(pink dot); the singular jump branch J from F1 to C4

− and its counterpart J ∗ (magenta curves) from the counterpoint on C2, at equal
distance from H , to C3; and the surface P (transparent midnight grape) of periodic orbits arising from H .

C2 and C3 on the scale of Fig. 1. The surface H consists of orbit segments of an intermediate timescale in both W s(S3)
and Wu(S2), namely those that “make it all the way across” in forward time from near C2 (where H is shaded red) to
near C3 (whereH is shaded blue). As we checked, orbit segments close to but not onH quickly diverge from this surface
in both forward and backward time in the X- and Y -directions.

Figure 1 is for ε = 0.0037 when one finds a stable MMO periodic orbit Γ, which is also shown. Starting near the at-
tracting branch C4

−, observe the SAOs of decreasing and then increasing amplitude that are generated by a slow passage
through the Hopf bifurcation point H . Well past H and the surface P of periodic orbits of the fast subsystem, Γ leaves
the branch C2 by following the surface H very closely to a vicinity of the critical branch C3. Somewhat past the fold
point F1, it subsequently has a sudden excursion in theX- and Y -directions to return back toC4

−; the process then repeats.

We conclude that the surface H of connecting orbits is a crucial part of the return mechanism that is responsible for a
single LAO per period of Γ. We further observe that Γ returns to C4

− very near where the critical jump orbit J from
F1 for ε = 0 returns (this point is given by the B-value of F1). Similarly, the take-off point on C2 is close to that
of the counterpart J ∗ of J , which lies on the other side of H at the same B-distance. The suggestion from Fig. 1 is,
hence, that the concatenation of J and J ∗ with the respective parts of C4

−, C2 and C3 acts as a singular limit of Γ as
ε approaches 0. Indeed, how the MMOs of the Olsen model (1) depend on parameters is a subject of our ongoing research.
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