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Multiple impacts in granular chains with Kuwabara-Kono dissipation
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Summary. We study multiple impacts in a chain of beads using the Kuwabara-Kono (KK) contact model [1], a nonsmooth (not
Lipschitz continuous) extension of Hertz contact that accounts for viscoelastic damping. For this purpose, we introduce new numerical
schemes which approximate dissipative impacts with good accuracy without including the nonsmooth KK viscoelastic component in the
contact force. These schemes are derived using the technique of modified equations, which allows us to construct time-discretizations of
the nondissipative Hertz law matching numerical dissipation with KK dissipation at different consistency orders. In addition, analytical
approximations of wave profiles are derived using asymptotic expansions, in the limit when the exponent of the contact force becomes
close to unity. Numerical tests are performed for the simulation of impacts in Newton’s cradle and on alignments of free beads.

1 Introduction

In this work, we introduce a new method for the numerical simulation of granular chains which allows to approximate the
KK contact model without explicitly including the nonsmooth viscoelastic term in the contact force, i.e., γ = 0 in (1):

f(δ) = k

(
δα+ + γ

d

dt
δα+

)
, (1)

where f(δ) is the spring/dashpot contact force, δ is the indentation, and α = 3/2 corresponds to the usual KK model
[1]. Our approach is based on the technique of modified (or equivalent) equations, in which effects induced by time-
discretization (such as numerical dissipation) are analyzed by considering suitable perturbations of the initial differential
equation. In addition, analytical approximations of propagating fronts (generated for example by an impacting piston) are
obtained using asymptotic expansions, by considering α− 1 as a small parameter.

2 KK numerical dissipation

We consider a Newton’s cradle, including local attachments consisting of strings or plates. The dynamical equations
including local restoring forces, where the attachment of the nth bead is represented by a spring with linear stiffness Kn,
are :

mnẍn = −Knxn + knδ
3/2
(n−1)+ − kn+1δ

3/2
n+ , 1 ≤ n ≤ N, (2)

with δn = xn−xn+1 and k1 = kN+1 = 0. In model (2), collisions are assumed nondissipative. Setting x = (x1, . . . , xN ),
v = (ẋ1, . . . , ẋN ) and y = (x, v), system (2) can be reformulated as

ẏ = f (y) =

(
v

g(x)

)
, (3)

where the components of g(x) ∈ RN are given by gn (x) = 1
mn

(
−Knxn + knδ

3/2
(n−1)+ − kn+1δ

3/2
n+

)
. In order to

approximate solutions of (10), we introduce the implicit one-step method
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(4)

where ∆k
n = Xk

n − Xk
n+1, h denotes the time step and Yk =

(
Xk

1 , . . . , X
k
N , V

k
1 , . . . , V

k
N

)
approximates y(k h). We

consider a modified (or equivalent) equation (see e.g., [3, 4] and references therein) corresponding to the scheme (4) :

Ẏ = f (Y ) + hF1(Y ) +O(h2), (5)

where the coefficient F1 needs to be determined. After some manipulations the modified equation (5) can be rewritten

Ẋn = Vn + h (θ − 1

2
) gn(X) +O(h2), (6)
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∆
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(7)

with ∆n = Xn −Xn+1, where a KK dissipation term clearly appears. Setting

θ =
1

2
+

γ

2h
= µ (8)

in (7) and neglecting O(h2) terms, one recovers the KK model

mnẌn +KnXn = kn∆
3/2
(n−1)+ +

3

2
γkn∆

1/2
(n−1)+∆̇n−1 − kn+1∆

3/2
n+ −

3

2
γkn+1∆

1/2
n+ ∆̇n. (9)

This observation leads us to the concept of tailored numerical dissipation. In this framework, one discretizes the nondis-
sipative model (2) with the dissipative scheme (4)-(8) in order to approximate the dissipative model (9).

3 Analytical approximations of wave profiles

We consider system (9) with a generalized elastic exponent α > 1, without local springs (i.e., Kn = 0) and for identical
beads, so that mn and kn are constant and rescaled to unity :

Ẍn = ∆α
(n−1)+ + αγ∆α−1

(n−1)+∆̇n−1 −∆α
n+ − αγ∆α−1

n+ ∆̇n. (10)

We consider the limit case of an infinite chain, assume ∆n ≥ 0 (absence of gaps between beads) and set

∆n(t) = δ y(ξ, τ)1/α, (11)

with ξ = ε (n − c t), c = δ(α−1)/2, τ = γ
2 ε

2 c2 t, and ε = α−1
αγ c . The new variable y can be interpreted as a rescaled

force variable. Substituting the Ansatz (11) in the dynamical equations (10), and performing an asymptotic expansion
with respect to the small parameter ε, one arrives to a logarithmic Burgers equation

∂τy + ∂ξ (y ln y) = ∂2ξy. (12)

The expansion is valid for α close enough to unity, and the logarithmic nonlinearity originates from the approximation
(y − y1/α)/(1− 1

α ) ≈ y ln y.
Alternatively, modifying the Ansatz as follows :

∆n(t) = δ y(s, τ)1/α, (13)

with s = 2
√

3 ε (n− c t), τ =
√

3 ε3 c t, ε = (1− 1
α )1/2 and c defined as above, one obtains the logarithmic KdV-Burgers

equation
∂τy + ∂s (y ln y) + ∂3sy = µ∂2sy, (14)

where µ = c 2
√

3 γ(1− 1
α )−1/2. This expansion is valid when α→ 1+ and assuming µ = O(1), hence γ has to be small.

The amplitude equations (12) and (14) both possess stationary front solutions, which can approximate the asymptotic
response of a chain impacted by a piston. They are valid in different regimes regarding the amount of contact damping,
and the logarithmic KdV-Burgers equation allows to approximate more general underdamped (oscillatory) fronts.
These approximations are tested by performing direct numerical simulations of the KK model. One observes a conver-
gence of the numerical solutions towards analytical profiles when α is close to unity. In addition, the analytical approx-
imations remain meaningful for α = 3/2, i.e. rather far from the asymptotic limit where the amplitude equations have
been derived.

4 Conclusions

New approaches for the numerical simulation of granular matter via the approximation of the Kuwabara-Kono model by
suitable numerical dissipation or the derivation of adapted amplitude equations are presented. More details can be found
in [2] and [5].
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