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Summary. Nonlinearities in energy harvesting (EH) systems are introduced by intention to broaden the range of operation parameters with 

high energy output. Nevertheless, as multiple solutions occur due to these nonlinearities, the determination of optimal operation conditions 

is a challenging task. A method based on parallel computing with numerical time integration is presented to determine these optimal 

operational parameters in the case of a bistable piezoelectric energy harvesting system under harmonic excitation, where excitation 

frequency and excitation amplitude are considered. Therefore the basins of attraction are taken into account to get a measure for the 

occurrence of multiple solutions. 

Introduction 
Bistable systems have the potential for efficient EH, due to their ability to undergo so called interwell solutions with large 

displacements around both stable equilibrium positions  and therefore high energy output in a wide range of excitation frequencies 

[1]. The challenge is that also intrawell solutions, i.e. solutions with small displacements around one stable equilibrium or chaotic 

solutions may coexist for the same parameter set. Which one of these solutions occurs is determined by the initial conditions which 

are in a real world EH application neither known nor controllable. To find parameter sets with likely high energy output, the 

probability of each solution is determined in the following. Therefore, the model of a bistable EH system first introduced by Erturk 

[2] in 2009 and extensively analyzed in [3] is used. It contains one mechanical degree of freedom with a cubic nonlinearity and a 

coupling with an electric circuit. It is given by the nondimensional equations 
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where 𝑓 (normalized excitation amplitude) and 𝜂 (normalized excitation frequency) are considered as the operational parameters in 

the following. The state variable 𝑥, depending on the normalized time 𝜏, is proportional to the displacement of a beam, which is 

discretized in space by the first eigenfunction. 𝑈 characterizes the voltage at the piezos. The numeric values for the dimensionless 

parameters are given by 𝑑 = 0.01, Θ1 = 0.13, Θ2 𝑐p⁄ = 0.24, 1 𝑅𝑐p⁄ = 0.55 and 𝑅 = 1. For more detailed information see [3]. The 

goal is to determine harmonic excitations given by 𝜂 and 𝑓, for wich the system has a high probabilty to undergo interwell solutions. 

General behavior of the bistable magnetoelastic energy harvesting system 
Figure 1a shows the steady state solutions and their basins of attraction of the EH system in the case 𝑓 = 0.1 and  𝜂 = 0.5. The 

results are computed by numerical time integration using the standard Runge-Kutta method (RK4). 

 

  
Figure 1a: Phase trajectories of intrawell solution around 

negative equilibrium position (blue), intrawell around 

positive equilibrium position (red) and interwell solution 

(black). The red, blue and black areas indicate initial 

conditions resulting in the respective solution, i.e. basins of 

attraction. 

 

Figure 1b: Maximal and minimal values of the displacement 

for each stationary solution as funtion of the normalized 

excitation frequency 𝜂 for 𝑓 = 0.1. 

 

The type of the solution is classified by its color, where black indicates an interwell solution and blue and red describe intrawell 

solutions around negative and positive equilibrium positions respectivly. In figure 1b all stationary solutions for a fixed excitation 

amplitude of 𝑓 = 0.1 are shown with respect to the normalized excitation frequency 𝜂 between 0.2 and 1.8. Each solution is 

represented by its maximum and minimum value of the state variable 𝑥. The same color code as before is applied with the addition 

that the gray areas indicate that there also chaotic solutions occur. It is noticeable, that for every 𝜂, where an interwell solution exists, 

also intrawell or chaotic solutions coexist. At this point it is so far unknown which of the coexisting solutions is most likely to occur 

in a real world application and therefore it is difficult to determine an operational parameter range were the energy output of the EH 

system is high. 
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Determination of high energy output operational parameter ranges  
 

To identify operation ranges with high energy output it must be considered that each solution occurs with a different probability 

depending on the probability of the corresponding initial conditions, if multiple asymptotically stable solutions coexist. Therefore the 

coresponding basin of attraction must be taken into account. When the basin of attraction is known, it is possible to predict which 

solution will occur for each set of initial conditions. However, in a real world EH application the initial conditions are unknown. In 

this paper the probability density function 𝑝(𝑥0, 𝑥0
′ ) of the initial conditions is assumed as the addition of two normal distributions 

around both equilibrium position with a standard deviation of 0.3. If 𝑝(𝑥0, 𝑥0
′ ) is known, the probability 𝑃 of a specific solution is 

𝑃 = ∫ ∫ 𝑝(𝑥0, 𝑥0
′ )

∞

−∞

∞

−∞

𝑏(𝑥0, 𝑥0
′ )d𝑥0d𝑥0

′ , 

where 𝑏(𝑥0, 𝑥0
′ ) is an indicator function which is 1 if the specific initial conditions (𝑥0, 𝑥0

′ ) are in the basin of attraction of the 

considered solution and 0 otherwise. To determine 𝑏(𝑥0, 𝑥0
′ ) using numerical integration the investigated area is limited and 

discretized. In our case 𝑥0 is considered between -2.0 and 2.0 and 𝑥0
′  between -1.0 and 1.0. The step size in both directions is 

𝑑 = 0.008. To compute a discretized version of the function  𝑏(𝑥0, 𝑥0
′ ) a numerical time integration with every possible combination 

of 𝑥0𝑖
 and 𝑥0

′
𝑘

 must be performed. The integration time for each integration must be long enough that the steady state solution is 

reached. By comparing each steady state solution with the specific one, 𝑏(𝑥0𝑖
, 𝑥0

′
𝑘

) can be set for all investigated initial conditions. 

Finally the probability of the specific solution can be determined by  

𝑃 = ∑ ∑ 𝑝(𝑥0𝑖
, 𝑥0

′
𝑘

)

250

𝑘=1

500

𝑖=1

𝑏(𝑥0𝑖
, 𝑥0

′
𝑘

)𝑑2. 

The results are shown in Figure 2a which is an extension of figure 1b since it additionally contains the information about the 

probability of each solution. The probability is visualized by the intensity of each color. For instance the interwell solution is 

visualized by different gray shades where white indicates a probability of 0.0 and black a probability of 1.0. It can be seen that for 𝜂 

in a range from 0.6 to 0.7 (green box) the probability that the system shows a high energy interwell solution is large. Hence this 

indicates that for a given f, 𝜂 should preferably be in this area for high energy output. To achieve these results it is necessary to carry 

out a large number of numerical time integrations, since for each considered 𝜂 (160 different values) it is required to compute the 

individual basin of attraction, which is generally time consuming (500 ∙ 250 ∙ 160 = 20,000,000 integrations). This can only be 

done by using a computing technique on a graphics processing unit. Therefore the time integration method (RK4) is implemented as 

a CUDA kernal by using the PYTHON package NUMBA. By reducing the resolution of the computed basins of attraction from 

𝑑 = 0.008 to 𝑑 = 0.08 this approach also enables to consider further parameter variations, for example different excitation 

amplitudes. A corresponding result is shown in Figure 2b where the probability of the interwell solution is visualized over the 

normalized excitation frequency and the normalized excitation amplitude. The information in this Figure clearly demonstrates the 

optimal operational range of the parameters 𝜂 and 𝑓 for which the probability is large, that we have a high energy output.  

 

 

  
Figure 2a: Absolute maximal and absolute minimal value of 𝑥 

for each stationary solution with respect to 𝜂 for 𝑓 = 0.1. The 

opacity of each color indicates the probability of each specific 

solution. 

Figure 2b: Apperance probability of the interwell solution 

with respect to 𝜂 and 𝑓. Dark black indicates a high 

probability for the interwell solution. Therefore dark areas 

indicate beneficial operation values for 𝜂 and 𝑓. 
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