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Summary. We propose a new approach for generating convex and concave relaxations for the solutions of parametric ordinary dif-
ferential equations (ODEs), for use in global dynamic optimization and reachability analysis. These relaxations are described as the
solutions of an auxiliary nonsmooth ODE system with embedded convex optimization problems. The resulting relaxations are indeed
valid relaxations, are convex, and converge rapidly to the original system as the parametric subdomain shrinks. The new approach
is compatible with any relaxations for the original right-hand side, and tighter such relaxations will necessarily translate into tighter
relaxations for state variables. Especially, if generalized McCormick relaxations are used, the new approach is guaranteed to yield
tighter relaxations than a state-of-the-art ODE relaxation approach [1], and thus may reduce the number of iterations for overarching
global dynamic optimization. Further implications and examples are discussed.

Background and Motivation

Global dynamic optimization is useful in a wide variety of engineering applications such as parameter estimation, global
optimal control, and optimization-based worst-case uncertainty analysis. Compared with stochastic methods for global
optimization, deterministic global optimization methods have the advantage that a globally optimal solution is guaranteed
to be found within a predefined tolerance in finite computation time. However, current deterministic global dynamic
optimization methods based on branch-and-bound [2] can only solve problems of modest size. Thus, improved techniques
are sought to extend these methods to problems of practical interest.
One computational bottleneck for global dynamic optimization is generating convex and concave relaxations for state
variables with respect to decision variables, termed state relaxations [1]. These relaxations are useful for computing
lower bounds for the global optimal objective value, which are required in deterministic global optimization algorithms.
Moreover, state relaxations could also help construct convex enclosures for the reachable set which is useful in applications
involving reachability analysis such as fault detection and robust optimal control. Hence, there is a need in global dynamic
optimization to develop efficient and accurate computational tools for generating state relaxations automatically.
State relaxations should have desirable convergence and tightness properties. The relaxations supplied to a branch-and-
bound global optimization method must converge rapidly to the underlying model as the decision space is subdivided or
else the overall global optimization method will be impeded by cluster effects, in which the method will branch many
times on intervals that either contain or are near a global minimum [3]. This notion of rapid convergence has been
formalized as second-order pointwise convergence [4]. Tighter state relaxations could construct tighter lower bounds
for the global optimal objective value, and thus may reduce the overall computational time by reducing the number of
required iterations. In reachability analysis, tighter enclosures of the reachable set could reduce the sets’ conservatism,
which could lead to earlier detection of faults or less conservative control inputs.

New Relaxation Approach

Consider a parametric ODE system of the form

ẋ(t,p) = f(t,p,x), ∀t ∈ (t0, tf ],

x(t0,p) = x0(p),

where x denotes dependent state variables and p denotes system parameters.
We propose a new approach for constructing state relaxations xcv(t,p) and xcc(t,p) for states x(t,p) with respect to
p. These relaxations are described as the solutions of an auxiliary ODE system whose right-hand side comprises convex
optimization problems with embedded relaxations for f . The auxiliary system is nonsmooth because of the nonsmooth
nature of optimal-valued functions. The advantages of this approach are presented as follows. First, if the relaxations
for f have second-order pointwise convergence, then the resulting state relaxations inherit this desirable convergence
property which could help avoid cluster effects. Secondly, the new approach is compatible with various relaxations for
f , such as αBB relaxations [5] and generalized McCormick relaxations [6], while previously established approaches
are typically limited by one particular type of relaxations. Thirdly, tighter relaxations for f necessarily translate into
tighter state relaxations. Thus, it is worthwhile from a dynamic optimization or reachability analysis standpoint to seek
tighter relaxation methods for closed-form functions since doing so necessarily translates into superior descriptions of
reachable sets for dynamic systems. Especially, if the generalized McCormick relaxations are employed, the new approach
necessarily yields tighter state relaxations than a state-of-the-art ODE relaxation approach by Scott and Barton [1], and
thus may reduce the number of required iterations for overarching global dynamic optimization.

Proof-of-concept Implementation

Two numerical examples are presented to illustrate the convergence and tightness properties of the new state relaxations.
The examples are implemented in MATLAB, using the ODE solver ode15s and the local optimization solver fmincon.
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Example 1
Consider the following parametric ODE system:

ẋ(t, p) = p(x2 − 1), x(0, p) = −2,

with tf = 0.15 and −1 ≤ p ≤ 1. State relaxations are constructed by the new approach using αBB relaxations of the
right-hand side function. Figure 1 shows that the resulting relaxations have second-order pointwise convergence, where
XC denotes the enclosure formed by state relaxations, and P denotes the parametric subdomain.

Figure 1: A log-log plot of width of the enclosure formed by state relaxations at t := tf versus width of the parameter’s domain
(circles) and a reference line with a slope of 2 (dashed).

Example 2
The following example is modified from a bioreaction model in [7] by adding more nonlinearities:

ẋ1(t, p) =
( 1.2x2
px22 + x2 + 7.1

− 0.18
)
x1, x1(0, p) = 0.82,

ẋ2(t, p) = 0.36(5.7− x2)−
12.636x2x1

px22 + x2 + 7.1
+

1

x1
− x22 + x21x2, x2(0, p) = 0.8,

with tf = 15 and 0.4 ≤ p ≤ 0.6. State relaxations are constructed by the new approach using generalized McCormick
relaxations and by the approach of Scott and Barton [1]. Figure 2 shows that the new state relaxations are tighter than
Scott–Barton relaxations for this example.

Figure 2: The final state x2(tf , p) vs. p (black-solid), along with corresponding Scott–Barton relaxations (blue-circled) and new
relaxations (red-dashed), plotted as functions of p at t := tf .
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