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Combinatorial models of global dynamics: learning cycling motion from data
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Summary. We describe a computational method for constructing a coarse combinatorial model of a dynamical system in which the
macroscopic states are given by elementary cycling motions of the system. Our method is based on tools from topological data analysis
and can be applied to time series data. We illustrate the construction by a perturbed double well Hamiltonian as well as the Lorenz
system.

Introduction

Conley’s fundamental theorem [4] characterizes the global structure of the dynamics of a continuous map on a compact
metric space. It states that the space can be decomposed into a (chain) recurrent set and its complement, on which the map
behaves gradient-like, i.e. trajectories transit from one recurrent component to another. Around the turn of the century, a
computational approach to this theory has been developed [12, 7, 9, 10, 1, 11].
Relatedly, ideas have been put forward in order to characterize the dynamics within a transitive component of the chain
recurrent set. For example, in [6], certain eigenfunctions of the transfer (or push forward) operator have been used in
order to decompose a transitive component into, e.g., almost invariant (or metastable) subsets.
The purpose of this note is to outline a computational procedure by which certain cycling behaviour of the system can be
detected and agglomerated into a coarse model. More precisely, we describe how to detect whether the system exhibits
motions along a topological circle in some geometric complex that represents a transitive recurrent component of the
system. A key ingredient in this procedure is a construction of circle-valued coordinates on simplicial complexes [5]; its
usefulness for analyzing recurrent dynamics was already suggested in [14].
In particular, our technique is applicable if no model is available, but the dynamics is only given in form of a time series
of data points xk = x(tk) ∈ Rd, k = 0, . . . ,m, that are, e.g., sampled from solution curves x : [0, 1] → Rd of some
differential equation or constructed by a time-delay embedding of scalar measurement data.

The construction

Given a time series x0, . . . , xm in Rd, we construct a combinatorial model which captures different types of cycling mo-
tion. Our pipeline consists of three main steps: constructing a topological space, finding dynamically relevant coordinates
and constructing a combinatorial model.

Discretization of phase space
A first attempt at obtaining a topological space from a time series x0, . . . , xm is to construct a Vietoris–Rips complex
with base set X = {x0, . . . , xm}. In our setting, this is impractical since the resulting complexes are usually too large
to be computationally tractable. In order to circumvent this problem we first quantize our data. For this, choose a radius
r ∈ R>0 and consider the cubical grid

B = B(r) =

{
d∏
`=1

r
[
z` − 1

2 , z` + 1
2

)
| z ∈ Zd

}
.

Since the elements of B (which we call cubes or boxes) form a partition of Rd, we can define Q : Rd → B by mapping
each point to the unique cube containing the point. Then

X := {Q(x) | x ∈ X}

is a cubical or box covering of the point cloud X . For a cube ξ =
∏d
`=1 r

[
z` − 1

2 , z` + 1
2

)
let z(ξ) = (rz1, . . . , rzd) be

its center. We can identify X with the subset

Z := {z(ξ) | ξ ∈ X}

of the integer lattice rZd. The set Z of box centers is called the quantization of the point cloud X . Fig. 1a shows a time
series with its cubical cover and the corresponding set of box centers Z.
We then resample the time series such that consecutive points lie in different cubes. For this, set τ(0) = 0 and recursively
define

τ(i) = min{j > τ(i− 1) | Q(xj) 6= Q(xτ(i−1))}

The time series x̂i = z ◦Q(xτ(i)), i ∈ [0, T ] is called the quantization of the time series x0, . . . , xm at radius r. Here we
let T denote the largest finite value of τ and [k, `] := {k, . . . , `} ⊂ N0.
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(a) Time series and cubical quantization. (b) Vietoris–Rips complex

Figure 1: Time series, its quantization and the resulting Vietoris–Rips complex.

Given a set of box centers Z, we construct the Vietoris–Rips complex K = VR(Z, d, δ), where d(x, y) = ‖x− y‖∞ and
δ = r (see the appendix for a definition of the Vietoris–Rips complex). Note that the choice of d and δ allows a point in
Z to be connected to all its diagonal neighbors. An example is shown in Fig. 1b.

Coordinates for dynamics
Circular coordinates are the key tool which we use to detect cycling. In the following paragraphs, we review their
construction from cohomology, explain how they can be lifted with respect to a time series, and outline how to find
elements of H1(K;Z) that induce dynamically relevant coordinates. In particuar, we will also define what it means to be
cycling with respect to a coordinate.

1. Cohomology and circular coordinates. A circular coordinate, as introduced in [5], is a functionK → S1 with minimal
variation along edges in its homotopy class (in particular, there is no relation to coordinates in the sense of differential
geometry). Abstractly, the construction of circular coordinates is motivated by the bijection H1(K;Z) ∼= [K, S1] where
[K, S1] denotes the homotopy classes of maps K → S1. Explicitly, given a cocycle α ∈ Z1(K;Z), the coordinate
θα : K → S1 can be constructed by first computing the harmonic representative which is given by

argmin{‖ᾱ‖2 | ᾱ = α+ d0θ, θ ∈ C0(K;R)}, where ‖α‖2 =
∑
e∈K1

α(e)2,

and then using the construction from [5] to obtain a function K → S1 which "varies by ᾱ(e) on each edge e". In this
work, the precise construction is not important since we only use the values of this function on the vertices of K which is
given by composing the minimizing θ with the canonical projection πS1 : R → S1 = R/Z. We denote this function by
θα : Z → S1. We remark that θα only depends on the cohomology class of α and is unique up to an additive constant on
each connected component of K. Examples can be found in Figs. 2 and 3.

(a) Coordinate θα varies around the right hole. (b) Coordinate θβ varies around the left hole.

Figure 2: Circular coordinates which capture holes in the complex.

2. Lifted coordinates. Given a quantized time series x̂ : [0, T ] → Z and a circular coordinate θ : Z → S1 we can form
the composite θ ◦ x̂ : [0, T ] → S1 which captures the change of the coordinate θ over time. Analogous to continuous
maps, we lift this function to a function θ̂ : [0, T ]→ R such that πS1 ◦ θ̂ = θ ◦ x̂: We define the lifted coordinate of θ and
x̂ via θ̂(0) = 0 and

θ̂(t) = θ̂(t− 1) + dS1(θ(x̂t), θ(x̂t−1)), t = 1, . . . , T,

where dS1(x, y) denotes the signed geodesic distance from y to x on S1.
For an example, let x̂ denote the quantized time setries from Fig. 1a. Fig. 4a shows the first 80 time steps of θα ◦ x̂, Fig.4b
shows the lift θ̂ over the same period of time. One can see from Fig. 4a that the time series does approximately 3.5 turns
with respect to the coordinate. The lifted coordinate Fig. 4b captures this directly, as it increases by 3.5.
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(a) Coordinate θγ varies around both holes. (b) Coordinate θδ varies around both holes.

Figure 3: A pair of bad coordinates.

(a) Circular coordinate evaluated along time series. (b) Lifted coordinate.

Figure 4: Circular coordinate and its lift along a time series.

3. Dynamically relevant generators. As described before, every cohomology class in H1(K;Z) induces a circular
coordinate. Some of these coordinates can be used to detected cycling dynamics. For example, the coordinate in Fig. 2a
is almost constant on the left side of the complex while it maps the right half of the complex surjectively onto the circle.
Therefore, a lift of this coordinate changes significantly if and only if the time series "cycles" around the right hole in
the complex. In particular, the coordinate can be used to detect cycling around the right hole. Similarly, the coordinate
in Fig. 2b can be used to detect cycling around the left hole. However, not all cohomology classes induce coordinates
suitable for detecting cycling dynamics. For example, the coordinates in Figs. 3a and 3b are not suited for detecting
cycling dynamics since they vary around both holes.
We now explain how dynamically relevant coordinates can be obtained. Intuitively, we want different coordinates to
describe different features of the dynamics. Therefore, large changes in different lifted coordinates should occur at
disjoint periods of time. To capture this, we define the correlation of two lifted coordinates θ̂ and η̂ as

c(θ̂, η̂) = 〈|∆θ̂|, |∆η̂|〉 (1)

where the i-th entry of the vector ∆θ̂ is the forward finite difference θ̂i+1 − θ̂i and 〈·, ·〉 denotes the standard Euclidean
inner product. Since we are interested in describing all possible cycling dynamics in the system, we want to find a
correlation minimizing basis. For a basis B of H1(K;Z) we define its correlation as

I (B) =
∑

α,α′∈B
α6=α′

c(θ̂α, θ̂α′). (2)

As an example, we again consider the time series 1a. From Fig. 4b we know that for the first 80 time steps, the series
does 3.5 turns around the right hole. Now consider Fig. 5 where the lifted coordinates for the bases {α, β} and {γ, δ}
are plotted for the first 80 time steps. The plots indicate that the lifted coordinates in Fig. 5a have a lower correlation
than the ones in Fig. 5b. An explicit computation (for all 1000 time steps) yields the values 0.158 and 12.8, respectively,
confirming that the preferred basis has lower correlation.
We now search for a basis with minimal correlation. Assuming α1, . . . , αn is any basis for the free groupH1(K;Z), every
basis can be written as Aα1, . . . , Aαn where A ∈ GLn(Z). In order to find a correlation minimizing basis, we search
GLn(Z), starting with the identity A := I and recursively applying basis change operations (sums of rows/columns,
multiplication of rows/columns with a unit) to A up to a given depth. Of all these bases we return the one with minimal
correlation.
This approach works sufficiently well for simple examples. However, since we are only searching a finite subset of
GLn(Z) we have no guarantee of actually finding a minimizer. A better algorithm for finding a correlation minimal basis
is a topic for future work.
Given a quantized time series and a circular coordinate, cycling dynamics can be inferred from changes in a lift of the
coordinate. More precisely, we define a quantized time series x̂ to be cycling along α if there is an interval [k, `] where θ̂α
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(a) Lift of the coordinates in Fig. 2. (b) Lift of the coordinates in Fig. 3.

Figure 5: Lifted coordinates for two different bases.

satisfies a monotonicity criterion and |θ̂α(`) − θ̂α(k)| > 1. The second condition ensures that the time series completes
at least one full turn during the segment [k, `]. The monotonicity criterion we use is the following: Given ε > 0, t̄ ∈ N>0,
the lifted coordinate θ̂ : [0, T ]→ R is called (ε, t̄)-increasing along [k, `] if

• |θα(t+ t̄)− θα(t)| > ε for all t = k, . . . , `− t̄, and

• the sign of θα(t+ t̄)− θα(t) is the same for all t = k, . . . , `− t̄.

For t̄ = 1, this definition requires θ̂α to be monotonic. In practice, it is usually necessary to use t̄ > 1 due to small
back-and-forth movement which decreases the lifted coordinate, or movement orthogonal to the cycling direction which
keeps the lifted coordinate constant. Note that the parameters ε and t̄ have to be specified by the user; we typically do this
by inspecting the lifted coordinates.
We define the subset E ⊂ B of all dynamically relevant generators of a basis B as all α ∈ B for which the time series is
cycling along θα. The elements in B \ E will be called spurious generators.

Macro model for cycling dynamics
We transfer the information on cycling motion back to the cubical covering: A cube ξ in the covering X is α-cycling if
the time series is cycling along α on some interval [k, `] and there is j ∈ [k, `] such that x̂j ∈ ξ. For ξ ∈ X , let E(ξ) ⊂ E
be the set of all dynamically relevant generators α for which ξ is α-cycling.
The cubical covering X can now be decomposed into equivalence classes: Two cubes are equivalent if they are cycling
with respect to the same set of non-spurious generators of H1(K;Z):

ξ ∼1 ξ
′ ⇐⇒ E(ξ) = E(ξ′).

We can furthermore distinguish cubes in which the trajectory ceases to be cycling. For this, assume the time series
is α-cycling along an interval [k, `] which is maximal in the sense that the time series is not α-cycling on any inter-
val which contains [k, `]. Now let t ∈ [k, `] be the first time step such that |θ̂α(`) − θ̂α(t)| < 1. Then the cubes
Q−1(x̂t), . . . , Q

−1(x̂`) are precisely those cubes which are hit during the "last full turn" with respect to α in [k, `]. We
call such cubes α-transient. For a given cube ξ, we let Et(ξ) denote the set of all generators which ξ is transient for. As a
finer classification of cubes we define

ξ ∼2 ξ
′ ⇐⇒ E(ξ) = E(ξ′) and Et(ξ) = Et(ξ

′).

We now classify the cubes in X according to either of these two equivalence relations and count transitions between the
classes. That is, we build the quotient

[X ] := X/ ∼ = {[ξ1]∼, . . . , [ξT ]∼}

as well as the transition matrix

P (∼) = (pij), pij = #{t ∈ [1, T ] | x̂t−1 ∈ [ξj ]∼, x̂t ∈ [ξi]∼}.

We now call (X/ ∼1, P (∼1)) a macro model, and (X/ ∼2, P (∼2)) an extended macro model for the given time series.
Figs. 6 and 7 show both macro models for the time series in Fig. 1a.

Experiments

The following results are obtained using our implementation of the pipeline in Section in the programming language Julia
[2]. In particular, we use the algorithm in [8] for computing H1 with integer coefficients.

https://julialang.org
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(a) Decomposition.

1157 86 142 α-cyc
1367 69 6 β-cyc

113 68 134 α-cyc β-cyc
115 6 27 no cycling

(b) Transition matrix.

Figure 6: Macro model for the double well system.

(a) Decomposition.

10 α-cyc
10 1137 86 142 α-trn

13 β-cyc
13 1341 69 6 β-trn

113 68 134 α-trn β-trn
115 6 27 no cycling

(b) Transition matrix.

Figure 7: Extended macro model for the double well system.

Perturbed double well
The time series in Fig. 1, which was used to illustrate the constructions in the previous section, was obtained by integrating
a stochastically perturbed version of the double well Hamiltonian system

dx = f(x)dt+ σdB, (3)

with x = (q, p), f(x) = (p, q − q3), σ = (0, 0.025) and B denoting Brownian motion. We integrate (3) from the initial
value x = (1, 0.7) by the SRIW1 scheme [13] with step size 0.01.
The macro models in Fig. 6 and Fig. 7 were generated using the coordinates in Fig. 2 and the monotonicity criterion ”θ
is (0.02, 2)-increasing”. These models are as we would expect for such simple dynamics. The yellow boxes capture the
location in phase space where direct transition between loops is possible and the green and blue boxes capture the location
where the trajectory cycles around the natural holes.

The Lorenz system
For this example we generated a time series by integrating the Lorenz system with the classical parameters σ = 10, β = 8

3
and ρ = 28 with time step size 0.1 for 1 million time steps using the classical fourth order Runge Kutta method. As starting
value, we choose (0, 10, 0), but we discard the first 6000 time steps since they ’close up’ the left holes of the complex.
This highlights one shortcoming of our current technique which will be addressed in future work.

(a) Sampled trajectory. (b) Quantization. (c) Coordinate θα. (d) Coordinate θβ .

Figure 8: Illustration of the pipeline for a trajectory on the Lorenz attractor.

We choose the quantization radius r = 2.5 and obtain a Vietoris-Rips complex with two-dimensional first cohomology.
We use the monotonicity criterion ”θ is (0.02, 6)-increasing” for both coordinates. Plots of the time series, the quantized
point cloud as well as the coordiantes of the correlation minimizing basis are shown in Fig. 8.
The macro model shown in Fig. 9 nicely captures many important aspects of the dynamics on the Lorenz attractor. We
learn that there are (at least) two different types of cycling motion, that each of these occurs in a distinct region in phase
space (the blue and green regions), and that these regions intersect (yellow region). We furthermore see that cycling
dynamics are present everywhere in the box decomposition since there are no non-cycling boxes.
In the extended macro model (Fig. 10), we see that the cycling regions are subdivided into a cycling set near the center
of the wings and a transient set near the outside of the wings. This indicates that all cycling dynamics in the inside of
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(a) Decomposition.

12060 1042 α-cyc
12677 901 β-cyc

1043 901 14219 α-cyc β-cyc

(b) Transition matrix.

Figure 9: Macro model for the Lorenz system.

(a) Decomposition.

3046 724 53 305 301 α-cyc
755 7535 37 346 α-trn

3359 656 128 234 100 β-cyc
766 7896 30 74 335 β-trn

80 368 9 384 5179 275 904 α-trn β-trn
212 17 229 165 642 3663 5 α-trn β-cyc
336 30 114 1129 36 2386 α-cyc β-trn

(b) Transition matrix.

Figure 10: Extended macro model for the Lorenz system.

the wings eventually moves to the outer regions. The extended model furthermore identifies the regions where direct
transitions between cycling dynamics can occur. The purple and yellow regions in Fig. 10a are the only regions where a
direct transition from α- to β-cycling dynamics is possible and the orange and yellow regions are the only places that can
contain the reverse transition.

Discussion

The techniques described in this paper appear to be a promising novel approach to identifying from time series data regions
of phase space in which oscillations occur and locations at which transitions between these oscillations occur. However, a
number of distinct questions need to be answered to obtain confidence in applying this technique to complicated higher-
dimensional systems, where the results cannot be inspected and modified by visualization. We briefly address those in the
following paragraphs.

Construction of the complex. The computation of circle-valued coordinates from data requires the construction of a
geometric complex. The approach chosen in this article accomplishes this by constructing a Vietoris–Rips complex from
a suitably quantized version of the given time series. In particular, we rely on finding a quantization radius r which is
small enough to contain those holes which give rise to dynamically relevant coordinates and large enough to connect
the data in a meaningful way. In general, such a radius need not exist. This even happens in the Lorenz system with a
trajectory that starts very close to the center of one of the wings.

Finding optimal coordinates. When searching for dynamically relevant coordinates, we encounter the problem of finding
a correlation minimizing basis. This poses the natural question of existence and uniqueness of such a basis. In addition, an
algorithm is needed to compute this basis or a suitable approximation. Furthermore, even the computation of an arbitrary
basis for H1( · ;Z) is currently not as efficient as we would like. We hope to address this using techniques inspired by
those for the computation of (persistent) cohomology with coefficients in a finite field [3].

Identifying cycling motion. In this contribution, cycling motion is identified by analyzing the monotonicity behavior
of circular coordinates. While this leads to satisfactory results in the presented examples, we have no general reliable
procedure of identifying recurrence. For example, a cycling time series with a bit of back-and-forth movement in every
full turn would be difficult to identify using the presented methods.
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Appendix: Background

Simplicial complexes. Let V be a finite set. An (abstract) simplicial complex with base set V is a subset K of the power
set of V which is closed under the subset relation, i.e. σ ∈ K implies τ ∈ K for every subset τ of σ. A σ ∈ K is called a
simplex, or more precisely a k-simplex, where k = |σ| − 1; the set of k-simplices is denoted by K(k). In the special cases
k = 0, 1 or 2 we call σ a vertex, an edge or a triangle, respectively.
Given a finite set V ⊂ Rn, a metric d on Rn and a simplex σ ⊂ V , the diameter of a simplex is defined as diamσ =
maxv,w∈σ d(v, w). The simplicial complex VR(V, d, r) = {σ ⊂ V | diamσ ≤ r} is called the Vietoris–Rips complex of
V at scale r.

Cochain groups. A basis for an abelian group G is a set (gi)i∈I of elements such that every g ∈ G can be written
uniquely as a finite sum g =

∑
njgj with nj ∈ Z. An abelian group with a basis is called free.

The cochain groups of a simplicial complex are the free abelian groups

Ck(K;Z) = {functions K(k) → Z}

where a basis for each group is given by the functions which are 1 on one simplex and 0 on all others.

First Cohomology. Fix a total order on V . We write [v0, v1, . . . , vk] for a subset {v0, v1, . . . , vk} of V if v0 < v1 <
· · · < vk. Clearly, for every σ ∈ K there are unique v0, . . . , vk ∈ V such that σ = [v0, v1, . . . , vk].
We define coboundary maps d0 : C0(K;Z)→ C1(K;Z) and d1 : C1(K;Z)→ C2(K;Z)

(d0f)([v0, v1]) = f(v1)− f(v0)

(d1α)([v0, v1, v2]) = α([v1, v2])− α([v0, v2]) + α([v0, v1])

Elements in ker d1 are called cocycles, elements in im d0 coboundaries. A calculation shows that d1d0 = 0 and therefore
im d0 ⊂ ker d1. We can therefore define the first cohomology group as the quotient

H1(K;Z) = ker d1/ im d0.

It follows from the universal coefficient theorem for cohomology (see section 3.1 of [15]) that H1(K;Z) is again a free
abelian group.
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