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Human positioning of a planar pendulum
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Summary. The human positioning of a planar pendulum is investigated. The system is modelled with two particles which are connected
with a rope. Collocated proportional-derivative control acts with human reaction delay at the suspension point of the pendulum that can
only move horizontally. The Hopf bifurcation analysis of the system is executed which leads to closed form algebraic expressions for
the Poincaré-Lyapunov coefficient and for the amplitude of oscillation.

Introduction

The motion of a planar pendulum is examined at its downward position considering human position control. The human
intervention is modelled with a proportional-derivative (PD) controller subjected to constant reaction delay, which leads
to a system of delay differential equations (DDEs). The inclusion of the time delay implies that the stability region in the
PD-plane will be bounded and sub- and supercritical Hopf bifurcations appear along the stability boundary.
The stability and amplitude of the periodic solutions close to the bifurcation point are calculated analytically leading to
closed form algebraic equations. We follow the algebraic procedures of Hopf bifurcation calculation as given in [1, 2, 3].

Mechanical model

The coupled hand-held pendulum system is modelled with two point masses connected with a rope as shown in Fig. 1.
The human hand is modelled with the mass m1 on which the control force F acts; this is the pivot point of the planar
mathematical pendulum with mass m2 and length l. The controlled mass can slide in a linear guide so that it can only
move along the x axis. The horizontal displacement of the hand and the bottom point of the pendulum are denoted with
x1 and x2, respectively. The equations of motion of the system are derived with respect to the two generalized coordinates

Figure 1: In-plane model of the coupled hand-pendulum system

x1 and x2 [4]. These expressions are highly nonlinear, therefore, their Taylor series are calculated up to third order in x1
and x2 leading to the governing equations:

ẍ1 =
F

m1
+
m2

m1

g

l
(x2 − x1)− m2

m1

((
m2

m1
+

1

2

)
g

l3
(x2 − x1)3 − 1

l2
(x2 − x1)(ẋ2 − ẋ1)2 +
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where the time derivative is denoted by dot. The control force can be chosen in different ways. In this study, a collocated
PD control is investigated which means that the human operator acts based on the displacement and velocity of his/her
hand:

F (t) = −Px1(t− τ)−Dẋ1(t− τ). (3)

Here, τ stands for the delay caused by the reaction time, while P and D are the proportional and derivative gain parame-
ters, respectively.

Stability analysis

Introduce the dimensionless distances x̃i = xi/l (for i = 1, 2) and the dimensionless time t̃ = t/τ , furthermore, the
transformed characteristic exponents and angular frequencies λ̃ = τλ and ω̃ = τω, respectively. By abuse of notation we
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drop the tildes and introduce the dimensionless parameters: µ = m2/m1, α = τ
√
g/l, p = Pτ2/m1, and d = Dτ/m1.

Then the characteristic equation assumes the form:

D(λ) = λ4 + dλ3e−λ + α2(1 + µ)λ2 + pλ2e−λ + α2dλe−λ + α2pe−λ = 0. (4)

When the real characteristic exponent crosses the origin at λ = 0, saddle-node bifurcation appears at p = 0. Hopf
bifurcation occours when a pair of complex conjugate roots lies on the imaginary axis at λ = iω, which yields the
stability boundary curve:
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Let the proportional gain p be the bifurcation parameter. Then the real part of the root tendency λ′ = dλ(pcr)/dp assumes
the form:
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where a and b can be expressed as
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The Poincaré-Lyapunov coefficient ∆ and the amplitude of oscillation A are obtained in the form:
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The first two terms of Eq. 8 are nonnegative, therefore the last three terms determine the sign of ∆ and so the sense of
the bifurcation. Fig. 2 shows the saddle node and Hopf bifurcation curves of the system indicating the sub- or subcritical
nature as well. The boundary of the stable region is always supercritical.

Figure 2: Stability chart in the PD plane. The numbers indicate the number of unstable characteristic exponents. (µ = 1/30, α =
1.1437)

Conclusions

The model can explain why hand-held pendulums often oscillate in spite of the intention of the human operator.
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