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Model order reduction approach for problems with moving discontinuities
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Summary. We propose a new model order reduction (MOR) approach to obtain effective reduction in the context of transport-
dominated problems or hyperbolic partial differential equations. The main ingredient is a novel decomposition of the solution into (i) a
function that tracks the evolving discontinuity and (ii) the residual part that is devoid of shock features. This decomposition strategy is
then combined with Proper Orthogonal Decomposition which is applied to the residual part only to develop an efficient reduced-order
model representation for problems with multiple moving and possibly merging discontinuous features. Numerical case-studies show
the potential of the approach in terms of computational accuracy compared with standard MOR techniques.

Problem Description

Hyperbolic partial differential equations (PDEs) are ubiquitous in science and engineering. Applications encompassing
the fields of chemical industry, nuclear industry, drilling industry, etc., fall within this class. Moving discontinuities
(such as shock-fronts) are representative features of this class of problems and pose a major hindrance to obtain effective
reduced-order model representations [1]. As a result, standard Model Order Reduction techniques [2] do not fit the
requirements for real-time estimation and control or multi-query simulations for such problems. This motivates us to
investigate and propose efficient, advanced and automated approaches to obtain reduced models, while still guaranteeing
the accurate approximation of wave propagation (and wave interaction) phenomena.
The main contribution of the work is to propose a new decomposition ansatz that decomposes the solution into (i) a basis
function that tracks the evolving discontinuity (wave front) and (ii) the residual part that is expected to be devoid of shock
features. This decomposition renders the residual part to be amenable for efficient basis generation. We, then, use these
generated bases to apply Proper Orthogonal Decomposition (POD) on the residual part and later reconstruct the solution
by lifting it to the high-dimensional problem space. We finally assess the combined performance of decomposition,
reduction and reconstruction approach (as opposed to conventional reduction and reconstruction approach) in the scope
of transport-dominated problems with moving and interacting discontinuities.

Mathematical Formulation

We discuss the proposed decomposition ansatz and outline the whole procedure in order to obtain a reduced-order model.

Decomposition step
We consider a scalar 1D conservation equation of the form:

∂tu(x, t) + ∂xf(u(x, t)) = 0, u(x, 0) = u0(x). (1)

We assume that u(x, 0) = u0(x) already has S number of shocks at locations x1(0), ..., xS(0) with values u−(xs(0), 0),
s = 1, ..., S from the left and values u+(xs(0), 0), s = 1, ..., S from the right. We associate a single basis function
σs(x− xs(t)) to each discontinuity at their respective locations. This basis function has a jump of height 1, i.e., σ+

s (0)−
σ−s (0) = 1, at the location of the discontinuity. We now decompose the solution, u, in the following way:

u(x, t) =

S∑
s=1

js(t)σs(x− xs(t)) + ur(x, t),

js(t) = u−(xs(t), t)− u+(xs(t), t). (2)

When xs(t) exactly matches the location of the shocks and (2) is exactly fulfilled, then ur(x, t) represents a function
without any shocks (discontinuities) and hence is amenable to a low-rank approximation.
The time-stepping scheme can be defined in the following manner. In each time step, we first compute updated shock
locations xs(tn+1), jumps js(tn+1) and then compute the residual part ur(x, tn+1) from

ur(x, tn+1)− ur(x, tn) =

S∑
s=1

js(t
n)σs(x− xs(tn))−∆t∂xf(u(x, tn))−

S∑
s=1

js(t
n+1)σs(x− xs(tn+1)). (3)

Reduced Order Model
The standard way to construct a reduced-order model (ROM) is to reduce (1) by applying Galerkin projection on u.
Instead, we apply POD on the residual part, i.e., we reduce (3) via Galerkin projection onto VN ⊆ Vh (where VN is a
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reduced space and Vh is a high-fidelity space). Upon considering the projection operator PN : Vh → VN , the reduced
scheme on the residual part is:

uk+1
r,N = ukr,N + PN

( S∑
s=1

js,N (tk)σs(x− xs,N (tk))−∆t∂xf(P
′

Nu
k
N )−

S∑
s=1

js,N (tk+1)σs(x− xs,N (tk+1))
)
, (4)

where k indicates the time-instant, ukr,N ∈ VN , u0r,N = PN (u0r) with ukN defined as:

P
′

Nu
k
N =

S∑
s=1

js,N (tk)σs(x− xs,N (tk)) + P ′Nu
k
r,N . (5)

Numerical Experiments

We reduce the Burgers equation given by: ∂tu + ∂x(u2

2 ) = 0, x ∈ [0, L], for illustrating the potential of the proposed
approach. The case studies under consideration assume that the shock is already present in the initial data, which for
single and multiple wavefront scenarios, is respectively given by:

u(x, 0) = u0(x) =

{
x, 0 ≤ x ≤ 1,

0, otherwise
and u(x, 0) = u0(x) =


x− 2, 2 ≤ x ≤ 4,

(x− 5)/2, 5 ≤ x ≤ 7,

0, otherwise.

We consider the spatial domain to be of length L = 10 and use an upwind finite volume scheme for the spatial discretiza-
tion and a first-order Forward Euler for the time-stepping. We take 8000 steps in time for the scenarios under consideration
i.e., t ∈ [0, 4] with a timestep of 0.0005. We consider three different spatial mesh resolutions (spatial step size of 0.005,
0.002 and 0.001) to assess the performance of the standard (POD without decomposition) and the proposed approach.

Figure 1: ROM error for the single wavefront scenario (left) and multiple wavefront scenario (right) under different mesh sizes.

We consider that js,N = js and xs,N = xs and use these jumps and shock locations during the ROM time-stepping. We,
further, use the computed residual part to generate the bases and build a ROM. Figure 1 demonstrates the decay of the
’L2 in space and L2 in time’ (absolute) error (between the full-order model governed by (1) and the reconstruction given
by (5)) for the scenarios of interest. Firstly, the initial error incurred via the proposed approach is lower than that of the
standard approach. This is attributed to the fact that our decomposition approach associates a basis function corresponding
to the travelling discontinuity. Secondly, the rate of decay of the error is better for the proposed approach compared to
the standard approach. Moreover, the ROM error for the proposed approach stagnates later for finer mesh-sizes. It is also
observable that the mesh refinement reduces the ROM error obtained via proposed approach in contrast to the ROM error
obtained via standard approach. The difference in the order of magnitude of the ROM error (at a certain number of basis
function) computed via standard and proposed approach is even more pronounced for fine mesh-sizes.

Conclusions

We have proposed a decomposition ansatz for problems with moving discontinuities and combined it with POD applied
to the residual part only. We have show-cased the performance of the proposed approach on the Burgers equation. The
proposed approach is able to resolve the discontinuities and also offers reduction in ROM error by using much less number
of basis functions. We will perform numerical experiments on many other mathematical models (falling within the class
of transport-dominated problems) in the near future.
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