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Summary. In the present contribution, mechanical systems with impulsive stiffness excitation are investigated. It is shown that

periodic solutions exist, which result in a repeated transfer of vibration energy from lower to higher modes and vice-versa. This allows

that the structural damping of the mechanical system can be utilized more effectively, resulting in a faster decay of transient vibrations

compared to the case where no impulsive excitation is present.

Introduction

The transfer of vibration energy, either in the modal space, or spatially to an attached system, allows to reduce transient

vibrations after some initial disturbance. In the first case the enhanced damping properties of higher modes can be utilized

more effectively, see. e.g. [1], whereas in the second case energy is transferred in a one-way, irreversible manner to a

nonlinear coupled additional system, denoted as nonlinear energy sink (NES), see [2], for example.

In the present contribution, mechanical systems with state-dependent impulsive stiffness excitation are investigated. It

is shown that, in the conservative case, periodic solutions exist which result in a periodic exchange of vibration energy

across modes. By taking structural damping into account, the effect on the total energy content of mechanical systems is

demonstrated.

Periodic solutions and energy transfer

In the following, mechanical systems with impulsive stiffness excitation described by equations of motion of the form

Mẍ(t) +Cẋ(t) + (K+

K∑

k=1

εk(xk, ẋk)Gδ(t− tk))x(t) = 0, (1)

are investigated. Therein, M, C and K represent the constant (n×n)-dimensional mass-, damping- and stiffness-matrix.

Impulsive parametric excitation is introduced at equidistant instants of time tk by using Dirac-delta functions δ(t − tk),
where the state-dependent strength of the impulses is denoted as εk(xk, ẋk). It was shown in [3], that the state of the

system r(t) = [x(t) ẋ(t)]T just after an impulse at tk, i.e. at tk,+, can be related to the state after the preceding impulse

at tk−1,+ by

r(tk,+) = Jk(εk)e
A∆T r(tk−1,+), (2)

where

Jk =

[
I 0

−εkM
−1G I

]

, A =

[
0 I

−M−1K −M−1C

]

, (3)

and ∆T = tk − tk−1 holds. The matrix Jk was denoted as jump-transfer matrix by Hsu, see [3]. If the impulsive strength

εk is selected to be state-dependent according to

εk = (
n∑

i=1

gT
i xk−ẋi,k−)/(

1

2

n∑

i=1

(gT
i xk−)

2/mi), (4)

see [4], neither energy is extracted from, nor fed to the mechanical system by an impulse, i.e. the impulse is energy-neutral.

In this case, Jk becomes a constant matrix and Eqn. (2) can be written in the form

r(tk,+) = JeA∆T

︸ ︷︷ ︸

Q(∆T )

r(tk−1,+) = Qk(∆T )r0 = ΨΛkΨ−1r0, (5)

where r0 = r(t0 = 0). The matrix Ψ is comprised of the eigenvectors of Q, and Λ = diag(λi), i = 1, 2, . . . 2n, of the

corresponding eigenvalues. Following the notation in [5], a periodic solution with period R is given by a sequence of R
distinct points r∗ in the state-space according to

r∗(tm+r,+) = Qrr∗(tm,+), r = 1, 2, . . .R− 1, (6)

r∗(tm+R,+) = QRr∗(tm,+) = r∗(tm,+), (7)

denoted as P -R solution. It can be seen from Eqn. (5), that the last condition (Eqn. (7)) is fulfilled if there exists a

timespan ∆T between adjacent impulses, for which ΛR = I holds, where I represents the identity matrix. With a simple

example, the existence of such cases is demonstrated in the following.

The investigated mechanical system comprises two masses connected by stiffness and damping elements and is pinned

on one end, see Fig. (1), where the stiffness k01 = k̄01 + εkg01δ(t − tk), i.e. consists of a constant and an im-

pulsive part. At equidistant instants of time tk, stiffness impulses with a strength according to Eqn. (4) are applied.

Hence, the equations of motion are of the form of Eqn. (1). As system parameters m1 = 1, m2 = 0.5, k̄01 =
1, k12 = 2, and a stiffness-proportional damping C = αK, α = 0.01, were used for the numerical calculations.
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Figure 1: Sketch of investigated mechanical system.

Figure (2a) shows the eigenvalues λi, i = 1, . . . 4, of the mapping

matrix Q in the undamped case (α = 0), for different values of

the timespan ∆T between adjacent impulses. One notes that within

the investigated interval of ∆T , two real and two complex conju-

gate eigenvalues exist. Exemplarily, the case ∆T = 6.68672 where

λ12 = ±1 and λ34 = ±i, see the dotted unit-circle in Fig. (2a), is

investigated in more detail. Applying the mapping matrix Q four times gives λR
1,2 = 1 and λR

3,4 = 1, i.e. the mechan-

ical system attains the initial state again after applying four impulses. Hence, we have a P -4 solution with a period of

4∆TP−4. Figure (2b) depicts the corresponding 4-periodic timeseries of the impulsive strength εk. The effect of the

impulsive excitation on the modal coordinates y1 and y2 is shown in Fig. (2c). As a first mode deflection according to

y(t = 0) = [1 0]T and ẏ(t = 0) = [0 0]T was used as initial condition, the mechanical system does not show any second

mode vibrations initially. This changes with the application of the first impulse, as energy is transferred from the first to

the second mode. In the following, the system exhibits first and second mode vibrations simultaneously, until after one

period the energy content of the second mode vanishes again. Thereafter, one observes a periodic exchange of energy

from the first to the second mode and vice-versa. Including structural damping (α = 0.01) allows to exploit the enhanced

damping properties of the second mode, see Fig. (2d). During the phases where the second mode contains vibration en-

ergy, the total energy content E of the mechanical system decreases faster compared to the phases where only first mode

vibrations occur. This results in a globally faster decay of the vibration energy E compared to E0 (energy content where

no impulsive excitation is present).
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Figure 2: Eigenvalues λi, i = 1, . . . 4, of mapping matrix Q for different values of the timespan ∆T between adjacent impulses -
undamped case α = 0, (a). Impulsive strength (b), and modal displacements y1 and y2 (c) for the case ∆T = ∆TP−4 = 6.68672 and
α = 0. Modal energy contents E1 (dotted) and E2 (dashed), total energy content of the mechanical system E, and total energy content
E0 of system without impulsive excitation for the damped case (d).

Conclusions

It was demonstrated that conservative mechanical systems exhibited to impulsive stiffness excitation of energy-neutral

kind can show a periodic behaviour, which can be utilized effectively to enhance the damping of transient vibrations.
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