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Summary. We investigate nonlinear and dissipative acoustic waves in a tube driven by a sinusoidal driver at one end and impossing
a fixed wall boundary condition at the opposite end. For driving amplitudes close to resonances in the tube, we have found multiple
oscillating shock waves in a weakly nonlinear thermoviscous acoustic model. For slow off resonance driving, we observed a nearly
linear oscillating ground state superimposed by bursts of oscillating schock waves. The small amplitude nearly harmonic oscillations
are slow, whereas the oscillating shock waves exhibit fast propagation back and forth in the tube.

Higher order nonlinear acoustic wave equation

In nonlinear acoustics the wave fields for the flow velocity or pressure will not be simple harmonic waves. Localized shock
waves may be generated or acoustic streaming may appear. The resulting flow patterns results from balancing dissipation
and nonlinear effects. In the literature oscillating solitons or solitary waves have been studied in a wide range of systems
as long Josephson junctions and optical fiber systems. Motivated by these investigations we shall here study oscillating
solitary shock waves in a tube driven by a harmonic driver at one end while imposing a fixed wall at the opposite end. We
shall asume plane waves in a cylindreical tube of length £.

Mathematical model

A number of model equations for weakly nonlinear acoustic wave propagation have been derived in the literature [1].
Here we use a model for acoustic waves in a Newtonian, viscous and heat conducting gas. Our model is based on the
dynamical equations for the fluid motion, continuity, the heat transfer and entropy together with an equation of state.
Introducing the velocity potential 1) = v (x,t) as function of position x along the tube center axis and at time ¢, our one
dimensional plane wave model in dimensionless variables and coordinates reads [2]
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where subscripts x and ¢ denote partial derivatives with respect to the space and time variables. The fluid flow velocity
u(x,t) is given by the potential through u = —1,, and the fluid pressure p is given by p = ;. The term b1),,; models
dissipation and y equals C),/C,, with C,, beeing the specific heat at constant pressure and C, is the specific heat at constant
volume.

Boundary conditions
At the left end (z = 0) of the tube a sound generator is mounted and at the right end (x = ¢) we have a fixed wall. The
boundary conditions become

u(0,t) = —1,(0,t) = Dsin(wt) and u(f,t) = —1,(¢,t) =0. (2)

The parameter D is the driver amplitude and the driving frequency is denoted by w. Initially we take a fluid at rest
corresponding to 1(x,0) = 0 and ¢;(x,0) = 0. We solve Eq. (1), together with the initial conditions (2), by a semi
difference method discretizing to second order in space and integrating in time using a 4-5 order Runge Kutta method.
Integration is conducted until steady state has emerged. The following parameters are kept fixed £ = 1,b = 5-10~* and
v=14.

Numerical results

For the driver parameters D = 0.01 and w = 27 the left panel of Fig. 1 shows a three dimensional plot of the fluid velocity
field u(z, t) as function of  and ¢. The driver frequency corresponds to the eigenfrequency of the second harmonic of the
linearized model (1). This means we drive the nonlinear equation at a resonance frequency. However, due to damping and
the nonlinear terms the emerging steady state solution consists of two oscillating shock waves, travelling forth and back
in opposite directions.

The right panel of Fig. 1 shows a plot of the fluid velocity u(x, t) driven at the nonresonant frequency w = 0.1 and with
driver amplitude D = —0.125. The simulations reveal the surprizing result that the slowly varying ground state oscillation
is superimposed a fast back and forth oscillating shock wave. We observe that during one driver cycle the shock wave
oscillations appear for decreasing (0, ¢) corresponding to compression of the fluid and disappears for increasing (0, t)
corresponding to decompression.
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Figure 1: Left: Resonant oscillations of two counter propagating shock waves. Right: Non resonant oscillations superimposed fast
travelling shock waves.

Conclusion

Driving nonlinear acoustic plane waves at resonance in a cylindrical tube leads to oscillating shock waves. A driving
frequency corresponding to the n’th linear excitation mode in the linearized model of Eq. (1) leads to n oscillating fully
nonlinear shocks. However, an upper limit for the number of oscillating shocks is expected given by the width of the
shocks and the space available in the tube. For the nonresonant driving case full numerical simulations revealed excitation
of a nearly linear ground state superimposed oscillating shock waves in bursts.The shock waves oscillates fast back and
forth in comparison to the slow ground state wave oscillation.
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