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Summary. An extension of the semidiscretization method to impulse dynamic subspace (IDS) is summarized. This domain is the
eigenspace of a measured impulse response function (IRF), which is commonly used in the industry. By considering the special
properties of the measurement the stability of a single degree of freedom (DoF) milling model is presented as a representative example.
Convergences are shown for Hopf and Period Doubling (PD) induced instabilities.

Introduction

In the verge of the new technological revolution more and more automatized solutions will appear in the daily life and
very much in the manufacturing sector. One of the most difficult processes to be automatized are the ones that rely on
human pattern recognition like understanding traffic situations. Dynamic characterization of machine tools are one of
these problems, due to the special parameter identification techniques and selection methodologies used nowadays in the
industry. In order to avoid that the impulse dynamic subspace (IDS, [1]) is used for carrying dynamic information.
In this work, a modeling technique is presented where the determination of model parameters is avoided and the process is
directly described in the IDS. The main aim is to show that it is possible to derive theoretically the stability properties of a
time-periodic milling process by only using the measurable IRF. The time-periodic nature of the milling process induces
a stationary solution, which is always apparent and it directly determines the surface quality. However, this stationary
solution can loose its stability by setting ’wrong’ parameters, and can lead to a high amplitude, limiting oscillation. This
limiting oscillation is mathematically stable, although the engineering jargon calls this as chatter instability [2], which
refers mathematically to the unstable nature of the stationary time-periodic solution.
The main reason of this oscillation is the regenerative effect, when the consecutive tooth of the milling cutter cuts the
surface left by the previous teeth. Since then many methods have been developed in time- and frequency- domain for de-
termining stability of the corresponding stationary solution. Frequency domain solutions, like zeroth order approximation
(ZOA, [2]) and multi-frequency (MF, [2]) solution, based on D-subdivision, and Hill’s infinite determinant method, can
include the measured frequency response functions (FRFs). However, this advantage comes with a huge disadvantage,
namely, these methods only provide the critical (non-hyperbolic) limits and not actually the stability boundaries. Also to
define the ’measure of stability’ (distance from the border) is not straightforward in this case. One needs extremely spe-
cialized theorems to perform optimization. Time-domain methods like semidiscretization, time-finite element, collocation
methods and spectral element methods, provide the Floquet-multipliers [3], whose magnitude are excellent to ’measure’
stability for optimization purposes. However, all these methods rely on time-consuming modal parameter fitting, which
computation time adds to the already slow extensive scanning of the parameter space constructing a given stability chart.
In order to help on this disadvantage a method is proposed here by performing process modeling based on the IDS [4],
which essentially a good candidate for avoiding manual fitting. Moreover by using time-domain based methods the
’measure’ of stability is also granted by the magnitude of the multipliers.

Stationary Solution

There are plenty of papers dealing with modeling of regenerative milling processes [2, 5, 1]. In general, the milling process
is not only time-periodic, but also nonlinear due to the degressive characteristic of the specific cutting force ftra(h) (N/m)
[6] given in (tra) (figure 1a) coordinate system. In milling, each ith (i = 1, ..., Z) tooth cuts different thickness of the
workpiece hi material during the rotation of the tool with angular velocity Ω. On the other hand, the chip thickness is also
state dependent due to the regeneration [2], that is, hi(t) := hi(t, xt(ξ)) (ξ ∈ [−τ, 0], xt(ξ) = x(t + ξ)). In general, the
resultant cutting force is time-periodic in its coefficients (Fx(t, •) = Fx(t+ T, •)) and has the form (more detail in [6])

Fx(t, xt(ξ)) := Fx(t, ftra(hi(t, , xt(ξ)))) = Fx,0(t) + ∆Fx(t, xt(ξ)) + gx(t, xt(ξ)), (1)

where the stationary part of the force is Fx,0(t) = Fx(t, xt(ξ)), while the linear variational part and the higher order
terms are ∆Fx(t, xt(ξ)) and gx(t, xt(ξ)), respectively. The structural behavior of the machine tool is supposed to be
linear, thus, it can be represented with an IRF as h(θ) = (F−1{H(ω)})(θ) subjected to the causality h(θ ≤ 0) = 0.
If that is true, the response behaviour for a zero initial value can be represented by the Duhamel’s integral as xt(θ) :=∫ θ

0
h(θ − ϑ)Fx(t + ϑ) dϑ. Since the stationary solution is time-periodic xt(θ) = xt+T (θ) = xt(θ + T ), Duhamel’s

representation actually works for the nonlinear state-dependent forcing case too, if the stationary solution is considered
frozen for the time period T in the interval θ ∈ [0, T ]. The stationary solution is then shifted with a sufficient enough
transient time Tt to ensure periodicity and the boundary problem is solvable in both time and frequency domain with

x0(θ) =

∫ θ

−∞
h(θ − ϑ)Fx(ϑ, xϑ(ξ)) dϑ =

∫ Tt+T

0

h(θ + Tt − ϑ)Fx(ϑ, x0((ξ + ϑ) modT )) dϑ. (2)
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Figure 1: a) sketch of the milling model, b) stability charts with Hopf (H) and flip (PD) curves. Convergence for the solutions is
checked in c) by varying the discretisation resolution NSDM at H and PD points depicted in b).

Linear Stability of Stationary Solution

Perturbation is introduced around the time periodic stationary solution as x = x + u. By neglecting the nonlinear terms
gx in (1), the linear variational system can be expressed in the following linear form

ut(θ) =

∫ ∞
0

G(θ, ϑ)∆F−u (t−ϑ)dϑ+

∫ θ

0

h(θ−ϑ)∆F+
x (t+ϑ, ut+ϑ(ξ))dϑ, ⇒ ut(θ) = uIF,t(θ)+uF0,t(θ, ut(ξ)). (3)

The first term uIF of (3) represents the response for initial (variational) forcing ∆F−u (IF, alternative to initial condition),
while the second term uF0 describes the solution for actual forcing ∆Fx(t, ut(ξ)) = aKcAx(t)(u(t)−u(t− τ)) (see (1))
combined with the transient solution for zero initial condition (F0). In the first term the so-called Green function can be
replaced with the IRF as G(θ, ϑ) := h(θ + ϑ) = V(θ)Σ WH(ϑ), whose two left-singular-IRF for a single DoF system
V(θ) = [V1(θ) V2(θ)] can be used to introduce the new IDS as a result of SVD explained in [4]

u(t+ θ) = V(θ)q(t), ⇒ q̇(t) = A q. (4)

By defining the product 〈a(ξ),b(ξ)〉 :=
∫∞

0
aH(ξ)b(ξ)dξ the system matrix can be derived as A = 〈V(θ),V′(θ)〉 (using

V′(θ) = 〈G′(θ, ϑ),W(ϑ)〉Σ−1, G′(θ, ϑ) := h′(θ + ϑ), h′(θ) := (F−1{iωH(ω)})(θ), [4]). Describing the behavior in
the IDS (qi = q(ti), ti = i∆t, ∆θ = ∆t) and considering that only physical displacement space ui = u(ti) is needed
for the calculation of the process force, the size of the problem can be significantly decreased. Thus

qi+1 = eA∆tqi + 〈V(θ), uF0,i+1(θ, ui, σt(ui−l))〉 , l = 0, 1, 2, ..., r, r =
⌈
τ

∆θ −
1
2

⌉
+
⌊
p
2

⌋
, (5)

where uIF,i+1(θ) := uIF,ti+∆t(θ) = V(θ + ∆t)qi, uF0,i+1(θ, ut(0), ut(−τ)) := uF0,ti+∆t(θ, ut(ξ)) = aKc
∫∆t

0
h(θ −

ϑ)Ax(t + ϑ)(ut+ϑ(0) − ut+ϑ(−τ))dϑ and ut(0) := ui, ut(−τ) ≈ σt(ui−l) =
∑p
k=0 Pk(t)ui−r+k. Using the homo-

geneous solution operator (exponential term in (5)) as eA∆t = 〈V(θ),V(θ + ∆t)〉 [4] the following semidiscretization
map can be derived

qi+1 = 〈V(θ),V(θ + ∆t)〉qi + Di ui + ...+ Di−r+1 ui−r+1 + Di−r ui−r,
ui+1 = V(∆t)qi,

}
Di−l = −aKc

〈
V(θ),

∫∆t

0
h(θ − ϑ)Ax(ti + ϑ)Pr−l(ti + ϑ)dϑ

〉
, Pr(t) = −1.

(6)

Conclusion

The map presented in (6) can be used to approximate the monodromy operator of the time-periodic milling system in order
to calculate stability properties (figure 1c) of the corresponding stationary solution x. This converging solution (figure 1c)
uses the IDS which actually originated from measured IRF by using a well posed SVD on the homogeneous core of the
dynamics (G(θ, ϑ) at (3)). This theoretical framework can be extended for the entire period by facilitating larger portion
of the corresponding IRF function by using nested convolutions.
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