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Summary. Projection-based Model Order Reduction (MOR) aims at reducing the computational cost associated with the solution of
large-scale dynamical systems to be used in many-query settings such as optimization and control. For nonlinear systems, significant
cost reduction is only possible through an additional approximation of the nonlinear terms to reduce the computational effort of the
Reduced-Order Model (ROM). These hyper-reduction techniques often lead to instability when the nonlinear terms are not approx-
imated with a high accuracy. Increasing the accuracy of the nonlinearity approximation increases the complexity of the ROM and
will question the original motivation behind MOR to obtain a faster simulator and a system with lower number of states for controller
design. In this study, a non-intrusive (data-based without the need for the physical model) Reduced Basis (RB) method is proposed
for a highly nonlinear model, called the Drift Flux Model (DFM), to simulate multi-phase flow inside a pipe. A set of RB functions
are extracted from a collection of high-fidelity solutions by changing the input signals of the system via a Proper Orthogonal Decom-
position (POD). The solution of the ROM is obtained through a linear combination of these RB functions with coefficients obtained
by a Residual Recurrent Neural Network (RRNN). The RRNN approximates the map between the input signals and the increment of
projection coefficients of the high-fidelity solution onto the reduced space. The generation of the RB functions and the training of the
RRNN are performed during the offline phase, while the RB solution of a new input signal can be recovered via the outputs of the
RRNN in the online phase. The proposed method decouples the offline and the online phases, and provides fast and reliable solutions
of the original DFM.

Problem description

One of the widely accepted models to simulate multi-phase flow is the DFM [1], a highly nonlinear set of conservation
laws described as below:
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where αi(t, x), ρi(t, x), vi(t, x), p(t, x) represent volume fraction, density and velocity of phase i and the common pres-
sure, respectively. The subscript i ∈ {l, g} denotes the liquid and gas phase with ci the sound velocity in the medium of
phase i, K and S two constants implying the flow regime and p0 and ρ0 the reference pressure and density. Here, t rep-
resents time and T is the time horizon of the simulation. In addition, x denotes the spatial coordinate and L is the length
of the spatial domain. Finally, F (t, x) and G(t, x), respectively, denote the frictional and gravitational terms, which add
extra nonlinearity to (1).
Highly nonlinear finite-volume schemes are developed to solve (1) [1], rendering the discretized system of equations
even more complex. Therefore, real-time simulations cannot be achieved unless powerful computational resources are
available. Moreover, control design for such a complex system is generally infeasible. Hence, MOR should be applied.

Reduced-order model

Intrusive (projection-based) MOR of (1) leads to an unstable system unless the nonlinear parts are approximated with
a high accuracy. To circumvent this issue, a non-intrusive (data-based) MOR is applied in this study, which in addition
resolves the need to access the physical model and enables the use of highly nonlinear and accurate finite-volume schemes.
The algorithm introduced in [3] is used here together with an RRNN structure as shown in Figure 1. The variables W and
b are, respectively, the weight coefficients and the bias values of each node in the hidden layer, to be specified during the
training. It is well-known that recurrent neural networks trained on the residual values (variation of states over each time
step) have a higher capability in approximating dynamical systems [4].
The RRNN structure takes the input signals of the system and gives the temporal variation of the coefficients of the RB
functions as an output. Since we are dealing with a dynamical system, the coefficients of the RB functions in the previous
time step are also fed as an input to the RRNN.

Results

In the simulations for the RRNN, we have used one hidden layer consisting of 20 nodes with one time-step delay (0 : 1 in
the delay layer means both u(t) and u(t − 1) are considered as the training inputs). The delay in the recurrent structure
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Figure 1: The nonlinear autoregressive network with exogenous inputs combined with RRNN.
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Figure 2: Comparison of the approximation of αg(0, t) and p(L, t).

is also set to one. The inputs to the system (u(t) in Figure 1) are liquid and gas mass flow rates at the left boundary and
the valve opening at the right boundary (3 inputs in total, u(t) ∈ R3). We have considered three independent variables
αg, vl and p in (1) and assigned 5 RB functions for each (15 outputs in total, y(t) ∈ R15). To train the RRNN, five
different samples of inputs u(t) are fed into the structure and the coefficients of the hidden layer (W and b) are regulated
to minimize the mean-squared error between the RRNN outputs and the temporal variations of the coefficients of the RB
functions obtained after applying POD to the snapshots.
To test the RRNN generalization, a new input is provided for the network and the comparison of the state variables has
been performed. The evolution of the state variables αg at the inlet of the computational domain and the pressure p at the
outlet of the computational domain is shown in Figure 2 for the actual solution, the intrusive and the non-intrusive ROMs.
The intrusive method gives unbounded and unstable solution over time although the nonlinear terms are approximated by
10 collateral basis functions using the Empirical Interpolation Method [5]; two times more accurate than the linear terms.
On the other hand, the non-intrusive one gives reasonably accurate results and is much faster than the full-order model.
The speedup (obtained by dividing the CPU time of solving the full-order model to the CPU time of solving the ROM)
for the non-intrusive method is 71.1 while for the intrusive one is only 2.05. To increase the accuracy in approximating
the gas volume fraction, the number of the RB functions should be increased; however, as the approximation of pressure
is of higher importance, we are satisfied with the performance of the non-intrusive ROM.

Conclusions

In this work, a non-intrusive MOR is applied to the DFM to reduce its corresponding computational time. Contrary to
the projection-based MOR that develops an unstable system, the non-intrusive method provides an accurate and a stable
reduced-order system, which is solved much faster compared to the original model.
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