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Figure 1: Experimentally measured frequency response curves of the membrane with increasing excitation levels, in the 
vicinity of internal resonance conditions. 
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Summary. We study the nonlinear damping of a nanomechanical graphene drum resonator. Laser interferometry is used to measure and 
optothermally actuate the resonator near an internal resonance condition. An unconventional nonlinear damping behavior is observed at the 
internal resonance frequency. A multimodal analytical model is constructed to understand the nature of this phenomenon and to relate the 
observed nonlinear damping to the physics of the system. 

Introduction 

Micro/Nano-mechanical systems are utilized in many technologies and often have been used for their sensing capabilities. 
An ideal framework for sensitive nanomechanical devices is 2-D materials, and especially graphene, due to its exceptional 
mechanical, electrical and thermal properties. By their atomically thin nature, these systems are fundamentally nonlinear. 
In addition to the geometric nonlinearities, graphene membranes also have nonlinear energy decay mechanisms[1]. 
Nonlinear damping in these devices is a fundamental limitation to their sensing capabilities yet its full understanding is 
an open question. Among different dissipation mechanisms, an important factor that is hypothesized to affect damping 
properties of graphene nanodrums is the intermodal couplings[2]. In this work, we study the nonlinear dynamics of a 
nanomechanical graphene resonator near its internal resonance condition to amplify the intermodal effects and uncover 
the physics between nonlinear damping and mode coupling. 
 
Experimental method and observations  
 
Experiments were conducted by optothermally actuating a graphene nanodrum while measuring its motion using laser 
interferometry. Optothermal actuation results in modulation of membrane tension, effectively creating a parametric 
excitation to the fundamental mode of the membrane that has an eigenfrequency 𝜔ଵ and direct excitation to a secondary 
mode of the membrane that has an eigenfrequency 𝜔ଶ ≈ 2𝜔ଵ. We take advantage of this to investigate the effects of 
intermodal couplings and internal resonance on the nonlinear damping by exciting the membrane with an actuation 
frequency of 𝜔ி ≈ 2𝜔ଵ, which drives both modes resonantly. We experimentally study the membrane frequency 
response curves (Figure 1). By increasing the excitation level, we utilize the hardening type geometric nonlinearity of 
the system to match the internal resonance condition between these two modes. At the vicinity of internal resonance, we 
observe frequency “locking” at higher drive powers, where the increase in resonance peak with respect to the excitation 
amplitude is almost zero. We found that forcing the system even further breaks the “locking” barrier, causing a dramatic 
increase in amplitude and frequency of the parametric resonance, which we refer as “shooting”. 
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Figure 2: Steady state frequency response of the analytical model revealing the 
source of “shooting” behavior observed in the experiments, which is annihilation 
of saddle-node bifurcations. 

Figure 3: Effective nonlinear damping with respect to intermodal coupling 
strength and excitation frequency. Nonlinear damping is maximum at the 
internal resonance condition. 

Analytical model and results 
 
Parametric resonance of nanomechanical systems is commonly modelled by using a single Mathieu-van der Pol-Duffing 
equation [3]. This model is only viable for nonlinear dynamic characterization far from the internal resonance as it will 
imply a varying intrinsic nonlinear damping for high driving powers in the vicinity of internal resonance, which has no 
physical foundations. This is clearly because of the intermodal effects, that necessitate multimodal modelling of the 
system. To capture the dynamics at the vicinity of internal resonance, we add to the Mathieu-van der Pol-Duffing single-
mode model, a secondary linear oscillator that is directly driven by the excitation. We couple two modes by terms that 
arise from the nonlinear potential of 2:1 internal resonance 𝑈௖௣௟ = 𝛼𝑥ଵ

ଶ𝑥ଶ (i.e., the coupling terms are: −𝜕𝑈௖௣௟/𝜕𝑥ଵ for 
the primary mode, and −𝜕𝑈௖௣௟/𝜕𝑥ଶ for the secondary mode): 

                  
𝑥̈ଵ + 𝜔ଵ

ଶ𝑥ଵ + 𝛾𝑥ଵ
ଷ + 2𝛼𝑥ଵ𝑥ଶ = 𝐹ଵ𝑥ଵ 𝑐𝑜𝑠(𝜔ி𝑡) − 2𝑥̇ଵ(𝜏ଵ + 𝜏௡௟𝑥ଵ

ଶ) 
𝑥̈ଶ + 𝜔ଶ

ଶ𝑥ଶ + 𝛼𝑥ଵ
ଶ = 𝐹ଶ 𝑐𝑜𝑠(𝜔ி𝑡) − 2𝜏ଶ𝑥̇ଶ 

 
where 𝛾 is the Duffing coefficient, 𝛼 is the intermodal coupling strength, 𝐹ଵ is the parametric excitation level, 𝐹ଶ is the 
corresponding direct forcing level and 𝜏௟, 𝜏௡௟  are the linear and nonlinear damping coefficients respectively. By analyzing 
the slow dynamics of the system, we reveal the modification of system parameters due to modal coupling, near the internal 
resonance condition (2𝜔ଵ ≈  𝜔ଶ). Using the intrinsic parameters of the modes for analysis, characterized by analyzing 
the uncoupled nonlinear response measurements, it is possible to see that the biggest effect of modal coupling is on the 
nonlinear damping. Additionally, the nature of the dramatic amplitude increase after the internal resonance is discovered 
by the bifurcation analysis of stationary solutions. The stationary (steady-state) solutions of the equations cease to exist 
in the vicinity of the internal resonance (see Figure 2) due to saddle-node bifurcation points. The annihilation of the 
bifurcation points connects two solutions branches, triggering the “shooting” phenomenon and can be used to characterize 
the coupling strength between the modes.  
 
 
 
 
  

 

 

 

 

 

 

Conclusion 

We report on nonlinear damping variation via 2:1 internal resonance in graphene nanomechanical resonators. We observe 
a massive increase in damping in the vicinity of internal resonance that is followed by a bifurcation causing a dramatic 
increase of amplitude and resonance frequency. To understand this phenomenon, the resonator has been modeled by a 
two-modes dynamical system undergoing a 2:1 internal resonance, which successfully explained the observations. This 
work shows a possible nonlinear dynamics methodology to characterize the intermodal coupling of nonlinear resonators 
by operating them in an internal resonance condition. 
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