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Summary. This paper investigates the dynamic behaviour of a geometrically nonlinear nanobeam resting on the fractional visco-Pasternak 

foundation and subjected to dynamic axial and transverse loads. The fractional-order governing equation of the system is derived and then 

discretized by using the single-mode Galerkin discretization. Corresponding forced Mathieu-Duffing equation is solved by using the 

incremental harmonic balance (IHB) method for the strong nonlinear case. Methodology and results are validated against the solution via 

multiple scales method for the weakly nonlinear case. A parametric study is performed for order two and three superharmonic resonance 

conditions and for primary resonance case. The results demonstrated a significant influence of fractional-order and damping parameter of 

the visco-Pasternak foundation as well as the nonlocal parameter and external excitation load on frequency response of the system.  

Introduction 

A special class of beam models is so-called nonlocal beams, where the nonlocal elasticity constitutive equation is 

employed to consider the small-scale effects [1]. Such nonlocal beams are usually referred to in the literature as 

nanobeams due to the nano-scale dimensions of structures. The incremental harmonic balance method is used to study 

nonlinear dynamic behaviour of beam structures by many authors, e.g. see [2]. The main advantage of harmonic balance 

techniques is that they can be employed to find the periodic solutions of strongly nonlinear systems without introducing 

a small parameter like in perturbation techniques [3]. Shen et al. [4] investigated the Mathieu-Duffing oscillator by the 

incremental harmonic balance (IHB) method and determined the stability of the periodic solution using the Floquet 

theory. Later, this method was extended to study the nonlinear Duffing [5] and forced Mathieu-Duffing type [6] 

fractional-order differential equations, where the fractional derivative term was approximated through the Galerkin 

procedure. This study aims to employ the incremental harmonic balance techniques to study the frequency response of a 

nanobeam system resting on the fractional visco-Pasternak type foundation. Pasternak elastic foundation model is 

usually used for materials which besides normal deflection contain shearing distortion. It should be noted that, under 

certain assumptions, a nonlocal beam model could represent nanostructures such as carbon nanotubes. In that case, 

boundary conditions to analyze the free or forced vibration of a nanobeam structure can be prescribed based on the end 

conditions in a carbon nanotube i.e. a number of layers of fixed atoms in the lattice (e.g. see [7]). If only one layer of 

atoms is fixed at both ends of carbon nanotube, we can use simply supported (S-S) boundary conditions in the 

mechanical model, and if several layers of atoms are fixed, we can use boundary conditions of clamped-clamped (C-C) 

nanobeam. The single-mode Galerkin method is used to discretize the governing equation and obtain the nonlinear 

response for the fractional-order forced Mathieu-Duffing equation. The results are verified by the comparison of 

amplitude-frequency curves from the multiple scales and incremental harmonic balance methods obtained for the 

superharmonic resonance conditions of order two and three and a primary resonance case. 

Problem definition 

The governing equation for the forced vibration of a nanobeam resting on the fractional visco-Pasternak foundation is 

derived based on the model presented in Fig.1. Following parameters are used: L is the length of the nanobeam, ρ is the 

density, A is the cross-sectional area of homogenous nanobeam,    and   
  are the coefficients of the fractional visco-

Pasternak foundation,    is the operator of the Caputo fractional-order derivative,     is the amplitude of static load 

while     is the amplitude of the dynamic force of the frequency   .  
 

 
Figure 1: Nanobeam on fractional visco-Pasternak foundation a) physical and b) mechanical model 

 

Based on the Euler-Bernoulli beam theory and von Kármán nonlinear deformation, nonlocal constitutive equation and 

the Newton’s second law for the elementary part of the nanobeam, the following nonlinear fractional-order partial 

differential equation of motion of the nanobeam resting on the fractional visco-Pasternak foundation can be derived 
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Solution procedures 

The partial differential equation (1) is nondimensionalized and after introducing a new time scale        and we 
assume the solution of nondimensional version of Eq.(1) as                   , nonlinear fractional-order forced 

Mathieu-Duffing equation is obtained in the following form 

             
    

      
                   

                                                        

For some initial guess    of the steady-state modal amplitude, a neighbouring state of motion can be expressed in the 

form        ,           , where    and    can be represented as sums of trigonometric functions and 

corresponding weighting coefficients. Based on Galerkin procedure as described in papers [5, 6], Eq. (2) is discretised 

and Newton-Rapson method is applied to solve for increments of amplitude when      . 

Numerical results 

Here, we show the numerical results obtained by the presented incremental harmonic balance (IHB) method for finding 

the frequency response of the system. We verify the results by comparing the steady-state frequency responses for the 

superharmonic resonance case       
  obtained by the IHB and the multiple scales method (MS), as given in Fig. 2a. 

Influence of the fractional-order derivative parameter for weak nonlinearity and the nonlocal parameter for strong 

nonlinearity on the amplitude-frequency responses are given in Fig. 2b and Fig. 2c, respectively.  

 

                 
Figure 2: Frequency response for the superharmonic resonance case       

 : a) weak nonlinearity, changes of nonlocal parameter, 

IHB vs MS, b) weak nonlinearity, changes of order of fractional derivative, c) strong nonlinearity, changes of nonlocal parameter. 

Conclusions 

From the validation study, it is revealed that the incremental harmonic balance method is in good agreement with the 

multiple scales analysis for the weakly nonlinear case. The advantage of the incremental harmonic balance method lies 

in the fact that it does not require the introduction of small parameter and thus strong nonlinearity cases can be 

observed. It has been demonstrated that introduction of the incremental harmonic balance method in the analysis of 

nonlocal structures can possibly lead to more reliable analysis of strongly nonlinear nano-scale systems. 
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