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Summary. For model-based control, an accurate and in its complexity suitable representation of the real system is a decisive prerequi-
site for high and robust control quality. In a structured step-by-step procedure, a model predictive control (MPC) scheme for a Schunk
PowerCube robot is derived. Neweul-M2 provides the necessary nonlinear model in symbolical and numerical form. To handle the
heavy online computational burden involved with the derived nonlinear model, a linear time-varying MPC scheme is developed based
on linearizing the nonlinear system concerning the desired trajectory and the a priori known corresponding feed-forward controller. To
improve the identification of the nonlinear friction models of the joints, a nonlinear regression method and the Sparse Identification of
Nonlinear Dynamics (SINDy) are compared with each other concerning robustness, online adaptivity, and necessary preprocessing of
the input data. Everything is implemented on a slim, low-cost control system with a standard laptop PC.

Introduction

The use of robots to increase work performance or human-machine interaction for rehabilitation are topics of high topi-
cality. For the performance of robotic manipulators, modeling, control, and sensing play an essential role. Modeling plays
an important role in the development process as well as for controlling the robot, e. g., for model-based control concepts
like model predictive control (MPC). Model-based control schemes offer many advantages in comparison to individual
joint control. The benefits are: (i) operation as a centralized control scheme – the highly nonlinear behavior of such a
system is considered; (ii) intuitive parameter tuning – an elaborate and time-consuming parameter tuning necessary for
PI or PID-based individual joint control is unnecessary; (iii) constraint considerations - actuator and state limitations are
already considered in the control design.
In [1] a model predictive controller (MPC) was derived and implemented for a modular 6-axis Schunk PowerCube robot,
see Fig. 4. The general MPC algorithm, see, e. g., [2, 3] is the following: (i) obtain a measurement/estimate of the state;
(ii) obtain an optimal input sequence by solving online an open-loop optimal control problem (OCP) over a finite horizon
subject to system dynamics and constraints; (iii) apply the first input of the optimal input sequence to the plant/robot; (iv)
continue with the first step. Challenges for the application are the highly nonlinear system dynamics as well as the limited
computation capacity. Everything should run on a slim low-cost setup, i. e., a standard laptop PC.
These challenges are met by a linear time-variant two-step approach, see Fig. 1. In a first step the nonlinear system
dynamics are approximated with a linear time-varying model [4] around the desired trajectory –using an inverse dynamic
approach / computed torque approach [5]. In the second step sophisticated techniques for linear MPC are exploited, i. e.,
the open-source quadratic programming solver qpOASES [6] is used.
The proposed LTV MPC control of the robotic system is able to perform complex trajectories, i. e., motion reversal and
zero crossing [1] 1. Nevertheless, the noticeable difference between calculated feed forward and MPC output, see Fig. 2
along the trajectory implies model inaccuracies. These findings imply that the friction model of the robot’s joints still has
some weaknesses which limits the performance of the overall control system. Therefore, more effort is needed to identify
the friction properties of the joints. Prior to this work, a classical system identification method, i. e., data pre-processing
in combination with nonlinear regression, was used to identify the friction properties of a single disassembled module.
Therefore, aim of this work is to evaluate how the large amount of data from different sources, i. e., Artifical Intelligence
will facilitate the complex and challenging modeling and system identification of an assembled system – e. g., can the
large amount of data be used to identify the effects in the assembled state and/or difference between individual products
due to production tolerances.
More specifically, we want to answer the question of whether the Sparse Identification of Nonlinear Dynamics (SINDy)
method [7, 8] improve the friction identification. In contrast to black-box AI methods, like Neural Networks or Gaussian
Processes – which try to approximate the data by adjusting some weights of a topological system, the SINDy method tries
to identify the governing equations from data. It approximates an unknown function f with a library Θ(X) of r potential
(nonlinear) terms. The SINDy approach is a parametric approach that, compared to NNs, works without massive amounts
of data. The approach allows for on-the-fly model adaptation due to its low computational complexity.
Let us recap the overall goal: "Improve the model-based control performance of a robotic manipulator by improving
friction identification using the SINDy approach to identify the governing equation from data." The main features are: (i)
the robustness of the approach and (ii) only the friction characteristic is identified – other well-identified or known terms
of the system are incorporated as prior knowledge.
In the next section, we describe the model and the methodology in more detail: (i) the robot which serves as an example;
(ii) the process control framework; (iii) the derivation of the equation of motion of the rigid multibody system with
Neweul-M2 [9] (iv) the existing friction model, (v) the SINDy concept and (vi) the recording of measurement data. In
Section Friction Identification the results of the approach are presented. Finally, in the Conclusion the overall control
performance of the system with the improved friction model is discussed.

1The complete motion of the manipulator can be seen in the deposited video https://www.itm.uni-stuttgart.de/en/research/
vision-based-control-of-a-powercube-robot/.



ENOC 2020+2, July 17-22, 2022, Lyon, France

constraints

optimizer MBS

LTV model

linear time-varying MPC (LTV MPC)

𝒚des
 𝒚des inverse 

dynamics

𝒖ff

trajectory

planinng

𝒚des,  𝒚des

 𝒚des

Figure 1: Topologic structure of the two-step control loop with
the feed-forward part uff and the LTV-MPC part.
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Figure 2: Feed forward torque of the old robot model compared
to the MPC output torque applied at joint β during a trajectory
with motion reversal.

Model and Methodology

The performance of the SINDy approach is evaluated on a modular 6-axis Schunk PowerCube Robot, see Fig. 4. For the
considered modular robot a Process Control Framework in Matlab Simulink and a Simulation Model in Neweul-M2 is
available. We focus on the friction identification of the first three joints of the robot, which are each a rotary unit PR 90
with a Harmonic Drive gear to see the influence of assembly and production differences of the same product. Therefore
measurement data is gathered during experiments followed by offline identification of the friction characteristics with
nonlinear regression and the proposed SINDy Framework, relying on Sparse Linear Regression. In the following, we
explain the single building blocks for model, Experimental Measurements and mathematical methodology.

Schunk PowerCube Robot

The properties of the various links are described in Tab. 1. For the design of the robot a "divide et impera" approach
is used. For the first three links the same rotary module (PR 90) is used. The fourth link, is the smaller version(PR 70)
within the model series. The fifth and six links of the robot consist of a pan-tilt unit in combination with an anthropomor-
phic gripper with a spherical wrist, is constructed from the single modules. The robotic manipulator is designed in such a
way that the arm has an analytically calculable inverse kinematics.
Each rotary module, consists of a brushless DC-motor which drives a Harmonic Drive gear, which provides torque at each
degree of freedom (DOF) based on the defined motor current. The control and power electronics are integrated, and an
incremental encoder is used for position and speed evaluation. Furthermore, a brake is incorporated in case of shutdown
or power failure.

Process Control Framework

The process control framework is depicted in Fig. 3 , consists of a Microsoft Windows laptop PC with Matlab R2014b and
Simulink, including the additional toolboxes Real-Time Windows Target and Simulink Coder. The laptop PC is equipped
with an Intel Core i5-3210M CPU (2x2.5 GHz, 8 GB DDR3). The communication between the Simulink model and the
hardware is based on an USB-CAN bus interface, which is embedded into Simulink via S-Functions and a communication
library from Schunk. A sampling rate of 50 Hz, corresponding to a sampling interval of 20 ms, is used. An external power
supply with constant voltage of 24 V in combination with the integrated control and power electronics of modules ensures
the necessary torques at the links.
Real-Time Windows Target [10] realizes a real-time engine for Simulink models on a Microsoft Windows PC and offers
the capability to run hardware-in-the-loop simulations in real-time. It is a lean solution for rapid prototyping and provides
an environment in which a single computer can be used as a host and target computer. Consequently, real-time simulations
are executed in Simulink without an external target machine.

Simulation
The robotic manipulator is modeled as rigid multibody system with joint friction. In a first step Neweul-M2 [9] aids
calculating a rigid body model without friction with the advantage of generating equations of motion in symbolic and
numerical form. A natural choice for generalized coordinates y are the joint coordinates y = [β, γ]T. Therefore the
resulting equation of motion (without friction) in minimal form can be denoted as

M(y)ÿ + k(y, ẏ) = q̃(y, ẏ) +Bu (1)

with the positive definite mass matrix M , the vector of generalized Coriolis, centrifugal and gyroscopic forces k and the
vector of generalized forces without friction q̃. The system input is the vector u = [T2, T3]T which consists of the applied
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Figure 3: Slim process control framework of the robotic manipulator

motor torque at each joint. Those motor torques are scaled accordingly with gear ratios included in B. A linear model
u = KMi describing the relation between motor torque and motor current is assumed. The motor constant KM has been
identified manually at the hardware. System parameters, such as masses, inertias, link lengths and gear ratios are taken
from CAD data and datasheets, supplied by the manufacturers.
In a second step friction torques τ (ẏ) are included into the model without friction, resulting in the vector of generalized
forces

q(y, ẏ) = q̃(y, ẏ)− τ (ẏ). (2)

For a more intuitive understanding τ is subtracted from q̃, since positive friction works against the current movement.
The equation of motion with friction can be gained by substitution of q̃ with q in eq. (1). Joint friction models of the form

τi(ẏi) = a1ẏi + a2 tanh(a3ẏi) + a4 exp(−a5|ẏi|) tanh(3a3ẏi), (3)

derived in [11] are used in a first application which results in the stated mismatch between feed forward and MPC output.
This form of friction model with parameter vector a includes the share of viscous friction corresponding to a1ẏi, the share
of Coulomb friction corresponding to a2 tanh(a3ẏi) as well as the superelevation of the Stribeck curve which is char-
acterized by a4 exp(−a5|ẏi|) tanh(3a3ẏi). The smooth tanh-function replaces the sgn-function to avoid discontinuities
within the model.
Focus lies on identifying more accurate friction models for both joints with either the SINDy method or general nonlinear
regression. Therefore data of y, ẏ, ÿ and u has to be collected during experiments or derived after running experiments
respectively, such that

τ (ẏ) = q̃(y, ẏ) +Bu−M(y)ÿ − k(y, ẏ) (4)

can be calculated. Stated methods can then be applied. The resulting values for τ obviously are dependent on all stated
variables y, ẏ, ÿ and u. The notation τ (ẏ) is chosen due to the assumption that friction effects only depend on joint
velocities.

SINDy Concept
The concept of Sparse Identification of Nonlinear Dynamics (SINDy) founds in the field of applied mathematics. It
represents a modern method to gain nonlinear models based on experiment data, a long known challenge in system theory.
The main concept behind SINDy can be described as reducing the nonlinear fit to a collection of function candidates to
a (sparse) linear regression, which can then be effectively solved with state of the art algorithms, providing robust and
efficient solutions.
The SINDy setup consists of a standard representation of a nonlinear system

ẋ = f(x,u) (5)

with state vector x ∈ Rn, possible input u ∈ Rq and the unknown vector field f . Starting out simple, assume the state x,
and its time derivative ẋ and the system input u to be known form unique time instances. The data can then be rearranged
into three matricesX , Ẋ and U as follows

X =


xT(t1)
xT(t2)

...
xT(tm)

 ∈ Rm×n, Ẋ =


ẋT(t1)
ẋT(t2)

...
ẋT(tm)

 ∈ Rm×n, U =


uT(t1)
uT(t2)

...
uT(tm)

 ∈ Rm×q. (6)
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Goal is to approximate the vector field f by a library of r candidate functions Θ(X,U) ∈ Rm×r which are weighed by
coefficients Ξ = [ξ1, ξ2, · · · , ξr] ∈ Rn×r as

ẋ = f(x,u) ≈ Θ(X,U)Ξ, (7)

where the columns of the library of candidate functions can contain all kinds of imaginable nonlinear terms. Those can
be polynomials in x, u or combinations of both or other nonlinear terms like trigonometric functions. Filling this library
with appropriate terms requires intuition on how the solution could look and is considered one critical point concerning
the success of the SINDy method.
The solution to the linear regression problem introduced in eq. (7) may be calculated with aid of various solvers, e. g., a
standard least squares solver

ξk = arg min
w

∥∥Ẋk −Θ(X,U)w
∥∥2
2
. (8)

Here ξk denotes the k-th column of Ξ while Ẋk denotes the k-th column of Ẋ .
Doing so does result in a reasonable model but at the same time leads to very complex and detailed models with many ac-
tive function terms. Key feature of the SINDy concept is solving the linear regression problem eq. (7) promoting sparsity
within the solution vectors ξk, which corresponds to the fact that most systems of interest can be described by only a few
active terms in f . Therefore solution techniques for sparse linear regression are applied to eq. (7). A schematic overview
and example for a system with two states is given with Fig. 5.
The overall concept appears to be very flexible regarding to all kinds of dynamical systems. There exists a wide range of
extensions which , e. g., allow SINDy to perform in discrete time or even to identify PDEs [7, 12].

The SINDy concept, in general, brings some advantages and some disadvantages compared to other machine learning
concepts, e. g., an artificial neural network (NN). Such a NN may be used to describe the unknown vector field f , which
also gives good results. One general disadvantage of a NN is the training process, which requires large amounts of
measureed data to obtain an suitable approximation for f . SINDy on the other hand can work with one single short
experimental trajectory as in Fig. 2. The SINDy method results in a set of nonlinear differential equations which may
even be physically interpretable where a NN just results in some non-interpretable matrix layers. In addition to that, the
SINDy results, being differential equations, can be evaluated in their whole domain and possibly even be extrapolated.
This is a major advantage over neural networks, which often provide unsatisfying approximation results outside of the
domain of the training data. Training data of course, has to cover all important system characteristics for both approaches.
Otherwise, some system aspects and properties will be left out in the identified system model.
A crucial drawback of the SINDy concept lies in the function library Θ and in the fact that only linear combinations of
these functions describe the resulting dynamics f of the system. One critical disadvantage of the SINDy concept lies in
its function library Θ and that only linear combinations of those functions can be described in the resulting f . Looking
at eq. (3), one cannot directly identify a nested term like a2 tanh(a3ẏi) with SINDy. Having a look back at eq. (3) one
cannot directly identify a term like a2 tanh(a3ẏi) with SINDy. The problem is that the parameter a3 is embedded inside
a nonlinear term. We will later avoid this by including multiple terms tanh(a3ẏi) with different fix parameters a3 into the
library Θ.
The main advantages and problems of the SINDy concept have been briefly touched upon here. In [8], however, a much
more detailed comparison of SINDy with artificial neural networks when used in model predictive control can be found.

Sparse Linear Regression
Two algorithms out of the wide variety of sparse linear regression methods were tested and could be applied to the setup.
One of them is the so called Least Absolute Shrinkage and Selection Operator (LASSO), which is well known from the

Figure 4: Experimental setup and configuration of the
six degrees of freedom Schunk modular manipulator.
The control is based on Real-Time Windows Target
and Simulink Coder.

Table 1: Technical properties of the Schunk modules.

module name nom. torque/force max. velocity

PR 90 (rotary)
joint α & β & γ

44.8 Nm ωmax = 25 rpm

PR 70 (rotary)
joint δ

10.0 Nm ωmax = 25 rpm

PW 70 (pan-tilt)
joint ε & ζ

12.0 Nm & 2.0 Nm ωmax = 25 rpm

PG 70 (gripper) 200 N vmax = 82 mm/s
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field of statistics and often used in machine learning applications. The LASSO can be described as `1 regularized version
of the standard least squares linear regression setup and can be written as

ξk = arg min
w

∥∥Ẋk −Θ(X,U)w
∥∥2
2

+ λ
∥∥w∥∥

1
. (9)

The parameter λ ≥ 0 adjusts the influence of the penalty term ‖w‖1 and therefore determines how sparse the solution
vector ξk turns out. With λ = 0 the solution is equal to the standard least squares problem’s solution stated in eq. (8).
Another sparsity promoting linear regression approach is given by the Sequential Thresholded Least Squares algorithm
(STLS) introduced in [7]. The STLS algorithm is an iterative procedure based on standard least squares solutions and can
be described as follows.

• An initial solution ξ(0)k is calculated as least squares solution with the complete library matrix Θ(0) = Θ(X,U);

• In each iteration the regression setup reduces by

– setting entries in ξ(r)k with absolute value less than a threshold parameter λ to zero;

– deleting the corresponding columns in Θ(r), which would then be multiplied by zero, which leads to Θ(r+1);

Solving the reduced least squares problem with Θ(r+1) leads to a new solution vector ξ(r+1)
k which includes the

remaining entries of ξ(r)k .

• Iteration ends if no more entries in ξ(r)k fulfill the threshold condition.

Again, the parameter λ > 0 determines the sparsity of the solution. One iteration step of the STLS algorithm is illustrated
in Fig. 6.
The critical point with both algorithms is choosing an appropriate value for the hyper parameter λ. In practice models for
a broad range of parameters λ are calculated which allows finding a good compromise between sparsity of the resulting
model and model error along a pareto front. The LASSO combined with k-fold cross validation is able to find this com-
promise by its own. With the STLS approach as it is described above one has to choose a model by hand. More sparse
solutions on the one hand allow for some form of physical interpretation of the result but on the other hand may show a
greater model error compared to other more flexible nonlinear regression techniques.

The whole SINDy setup was implemented in Matlab [13]. The STLS algorithm was implemented manually while a
LASSO implementation already exists within the Statistics and Machine Learning Toolbox.

=

ẋ1 ẋ2 ξ1 ξ2Θ(X,U)

Figure 5: Application of the SINDy concept with sparse linear
regression to a system with two states. Grey entries in ξk mark
entries which are zero.

Θ(r) ξ
(r)
k Θ(r+1)

ξ
(r+1)
k

Figure 6: Illustration of the STLS algorithm. Grey entries in
ξ

(r)
k are set to zero. Corresponding columns in Θ(r) are re-

moved. ξ(r+1)
k is the new least squares solutions with slightly

different entries.

Experimental Measurements
Before taking measurements, a suitable class of trajectories has to be defined used for friction identification. We chose
sine-shaped trajectories with variable frequency within this study since they can be constructed relatively easily. Being
at least two times continuous differentiable sine trajectories brings smooth acceleration and deceleration, which is crucial
for not exceeding joint limitations. Furthermore, differentiation and integration can be done analytically. The sine part of
the trajectory can be described as

y(t) = â sin(ω(t)t) (10)

with a constant amplitude â. Polynomial acceleration and deceleration phases around the sine trajectory part are needed
since the robot starts and ends in a static pose where velocities and accelerations must be zero. Part of such a trajectory
can be seen in Fig. 7.
The figure also points out a difficulty with measurement data. The robot’s joint positions are measured by absolute angle
encoders within each joint, which results in a non-smooth velocity measurement with coarse resolution. Therefore a
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suitable differentiation method is needed to calculate joint velocities and accelerations from joint position data. In [8]
the use of Total Variation Regularization Differentiation (TVDiff) is recommended. The TVDiff algorithm is introduced
in [14]. The paper and Matlab implementations of the algorithm for one- and two-dimensional data, can be found on
the author’s web page. The idea of TVDiff originates in the Tikhonov regularization where the energy of a signal is
minimized according to an energy functional without influencing the signal in a way a low pass filter would do. Variational
methods are quite popular in the field of imaging science for efficiently denoising images. TVDiff results for trajectory
measurement data are presented in Fig. 7. Figure. 8 demonstrates the advantages of TVDiff over finite differences with
a therefore synthesized signal with added white noise. With higher frequencies a slight low pass effect is visible but the
results are sufficient for the application with SINDy.
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Figure 7: Measured encoder velocity compared with the filtered
velocity from position measurements via TVDiff and the desired
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Friction Identification

With previously described methods almost all infrastructure needed to identify friction models is present. Friction char-
acteristics for robot joints B and C which correspond to the joint coordinates β and γ are displayed in Fig. 9 and Fig. 10.
The resulting friction characteristics of both joints, if moved individually, will be dependent on the joint angle. These
effects arise from model inaccuracies within the rigid multibody dynamics, e. g., incorrect inertia values or not modeling
cables etc. The influence of gravity at non-zero joint angles makes the resulting friction characteristics dependent on
the joint angle. This is against the assumption of friction only depending on joint velocity. Therefore for joint B the
gained data is preprocessed by selecting data points with |β| < 0.1 where the influence of gravity is negligible. The
filtered data is plotted in Fig. 12. Since many data points remain unused, a different strategy is chosen for joint C. Since
it is the upper body of two joints, the influence of gravity can be easily compensated by moving both joints in opposite
directions, keeping the upper part of the robot pointing straight upwards. Figure 11 illustrates half of a period of the
particular periodic trajectory. Identification with the gravity compensated trajectory leads to the friction characteristics for
joint C shown in Fig.10. As stated earlier the SINDy results are compared to a model calculated by nonlinear regression.
Eq. 3 therefore functions as template for the nonlinear regression with its parameters a1 to a5. The nonlinear regression
algorithm used is the nlinfit Matlab function which is included in the Statistics and Machine Learning Toolbox as
well.
The application of the SINDy concept still requires us to specify a library of function terms. Over time and within many
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Figure 9: Friction characteristic for joint B measured with a sine
trajectory. Only joint B was moved for these measurements.
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(a) (b) (c) (d) (e)

β = 0
γ = 0

β = â
γ = −â

β = −â
γ = â

Figure 11: Periodic trajectory for friction identification in joint C. Shown is half a period starting at the left turning point (a), going
through the robot’s zero position (c) and ending at the right turning point (e). Frames (b) and (d) display intermediate points.
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Figure 12: Fitted friction models for joint B after preprocessing
measurement data.
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Figure 13: Fitted friction models for joint C. No preprocessing
is needed.

experiments the library

Θ(ẏ) =
[
1 ẏ sgn(ẏ) tanh(5ẏ) tanh(10ẏ) tanh(20ẏ) tanh(100ẏ)

]
(11)

lead to promising results. The library contains functional terms for describing friction characteristics and at the same time,
leaves enough options for the sparse linear regression to cancel out function terms. Promoting sparsity without leaving
enough options for the algorithm would not lead to the expected results. A finer sampling of the terms tanh(aẏ) was tested
but results in high correlations between these functions, ultimately leading to difficulties in sparse linear regression. The
library does not contain terms describing the superelevation of the Stribeck curve. This will only be a minor disadvantage
since such a superelevation is not noticeable within the measurement data.

Applying SINDy and nonlinear regression to the measurement data together with the earlier discussed preprocessing
leads to the the friction models shown in Fig. 12 and Fig. 13. Both regression concepts deliver quite similar results.
SINDy outperforms nonlinear regression in the case of joint C, having the ability to choose freely from its function library
while the nonlinear regression always has to fit to its function template. While nonlinear regression for the data of joint B
would not work properly without preprocessing, the SINDy method would still lead to reasonable results. Although the
preprocessed data gives a better friction model and shows that SINDy can even work with a percentage of the available
data, making it robust to the amount of available measurement data.
An additional friction identification was performed for link A (corresponding to α) for better comparison of the joint
friction characteristics and models. Therefore a linear quadratic regulator was implemented, since there doesn’t exist an
MPC scheme for the rigid body model with y = α. The resulting friction models for link A are displayed in Fig. 14.
Again, nonlinear regression as well as the SINDy method perform well, although the measurement data is spread quite
heavily. Preprocessing the data is not necessary for either method.
Comparing the newly identified joint friction models to the previously used model from [11] points out two major aspects.
At first, friction models differ from joint to joint, although being the same kind of link module (PR90). Secondly, whether
the joint friction is identified for an isolated joint or at an assembled robot makes a big difference. Therefore the two
newly identified joint friction models differ heavily from the model identified in [11]. While in [11] single isolated joint
modules were researched, the additional weight of our robot above joints B and C amplifies friction at the joints’ axles.
Fig. 15 shows the comparison of the different models. Compared are the SINDy results identified above.
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Figure 14: Fitted friction models for joint A. No preprocessing
is needed.
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pared to the MPC output torque applied at joint γ.

Conclusion

With the methods and results developed throughout this paper, we can finally find the following conclusion. Both, System
Identification for Nonlinear Dynamics (SINDy) and nonlinear regression were applied to identify friction models for the
relevant joints B and C of the PowerCube robot. Additionally, a friction model for joint A was identified for use with a
linear quadratic regulator. The vast improvement of the feed-forward calculations together with the newly identified joint
friction models imply a general improvement of the robot model. Although the feed-forward torque almost matches the
controller output, slight differences still remain that result from model errors within the rigid body model without friction.
However, better trajectory tracking performance, critical for practical usage of the robotic manipulator, could not be im-
proved with the current setup. A first reason lies in using a linearizing MPC approach that does not adequately represent
nonlinear system dynamics. Second, the setup underlies limitations in hardware and software. On the hardware side, com-
munication between the robot and the centralized controller in Simulink is limited in speed since the Schunk PowerCube
Robot is designed for decentralized joint control schemes such as PID. On the software side, the MPC online optimization
cannot be evaluated arbitrarily fast. Both limitations contrast the need for trajectories and linearized dynamics with high
resolution in time whenever using LTV MPC.
Further research out of the scope of this publication has shown improvements in trajectory tracking performance with the
newly identified friction models when using a truly nonlinear MPC scheme.
When determining the friction, the research has been shown that the friction determination for isolated joint connection
modules is not sufficient. Within the robot assembly, the axes of the joints have to bear an additional load, which leads to
higher friction.
The SINDy method and its sparse regression algorithms make for a robust and fast method for identifying nonlinear
system dynamics. Nonlinear regression in comparison leads to very similar results but needs more computation time due
to its nonlinear optimization, making it less capable for real-time applications.
All in all, SINDy’s potential to identify parts of unknown system dynamics was successfully presented.
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