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Control-based continuation of orbits with complex time profile
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Summary. We illustrate how unstable trajectories with complex time profiles and large period can be tracked using feedback control-
based continuation. The experimental or computational effort is proportional to the period. The approach requires the feedback control
to be stabilizing within time of order 1 uniformly along the orbit. The approach is illustrated with a stochastic simulation of a delay
model for the Mid-Pleistocene transition of the palaeoclimate ice ages.

Control-based continuation
Control-based continuation applies feedback control to turn a controllable nonlinear dynamical system with inputs and
outputs into a system of nonlinear equations, which can then potentially be solved by general-purpose nonlinear solvers or
continuation (curve tracking) algorithms; see [2, 6, 7] by Renson, Barton et al and Schilder et al for detailed descriptions
of the methodology. The approach assumes that the user (e.g., experimenter) has implemented a stabilizing feedback
control loop. One may assume that the dynamical system follows an ODE of the type

ẋ(t) = f(t, x(t), µ, u(t)) where x(t) ∈ Rn with output y(t) = g(t, x(t), µ) where (e.g.) y(t) ∈ R, (1)

and µ are system parameters. In the experiments of [2, 6, 7] the dynamical systems were forced oscillators, the output y
was a position coordinate and the feedback control was in the form of a PD control, u(t) = kp[y(t)− yr(t)] + kd[ẏ(t)−
ẏr(t)], with a reference time profile yr. The control is said to be stabilizing the (for example) T -periodic trajectory
x∗(t) (with output y∗(t) = g(t, x∗(t), µ)) of the uncontrolled system ẋ = f(t, x, µ, 0), if for every T -periodic reference
yr ≈ y∗ and initial conditions (t, x) close to (t, x∗(t)) the controlled system (1) converges to a unique T -periodic limit
ylim(t) ≈ y∗(t). Moreover, the approach requires that the asymptotic input-output map Y : (yr, µ) 7→ ylim is continuously
differentiable in the space of T -periodic functions. If the stabilization condition is satisfied for the feedback control
y−yr 7→ u, then one may find the periodic orbit y∗ of the uncontrolled system as fixed point of the map Y : yr = Y (yr, µ)
if and only if yr = y∗, regardless of the dynamical stability of y∗. This enabled the authors of [1, 2, 5, 6, 7] to track
response curves through limit (fold/saddle-node) bifurcations, track fold bifurcations in two parameters, and detect stable
and unstable directions of saddle-type orbits in mechanical oscillator experiments.

Solving the nonlinear fixed-point problem y = Y (y, µ)

One difficulty when solving for (or tracking) fixed points of the input-output map Y is that the Jacobian of Y (yr, µ) with
respect to its arguments, which Newton iteration-based solvers require, is not known, and can generally be obtained only
by performing repeated experiments for small deviations of the inputs, (yr + δyr, µ + δµ). For mechanical oscillator
experiments the periodic orbits are nearly harmonic such that [7] approximated yr with low-order harmonics: yr(t) ≈
PN [yr](t) :=

∑N
`=−N y`b`(t), where, in their case, b`(t) = cos(`ωt) for ` ≤ 0, b`(t) = sin(`ωt) for ` > 0, ω = 2π/T

and N ≤ 10 typically. Barton, Renson et al used a (Newton-)Picard iteration, splitting yr = yP + yQ with yp ∈ rgP1 and
yQ ∈ rgQ1 (QN = I − PN ). They observed that, for fixed (yP , µ), the iteration yQ 7→ Q1Y (yp + yQ, µ) converges to
a limit yQ within measurement accuracy in one or two iterations, defining a map YQ(yP , µ). This reduced the fixed point
problem to the low-dimensional yP = P1Y (yp + YQ(yP , µ), µ) in rgP1, for which a finite-difference approximation of
the Jacobian is feasible.
We generalize this Newton-Picard approach to problems where we expect a severely non-harmonic fixed point y∗, that
is, typically problems with large period T . Our illustrating example below considers a forced system with forcing as
shown in fig. 1(top-left). The Picard iteration yQ 7→ QNY (yP + QNyQ, µ) suffers a linear low-frequency instability
for increasing periods T and fixed N . This is best illustrated considering the simplest case ẋ = ax − k[y − yr] with
y = g(x) = x and 0 < a < k for (1) on an interval [0, T ]. In this case the map Y is linear and commutes with PN
and QN , and the map y 7→ Y y has unstable eigenvalues corresponding to eigenfunctions of the form exp(2πi`t/T ) for
all ` < T

√
a(2k − a)/(2π) =: m. Thus, for the Picard iteration y 7→ QNY (yp + y) (with fixed yP ) to converge, the

projection PN must be injective on the space spanned by the m lowest harmonic modes. This criterion determines the
necessary dimension of the space rgPN of variables in which one has to formulate the nonlinear problem for the Newton
iteration, which is in general high-dimensional for large periods T :

yP = PNY (yP + YQ(yP , µ), µ) for yp ∈ rgPN , where dim rgPN ∼ N � 1 for T � 1, such that N ∼ T . (2)

The problem can be addressed if the control law yr − y 7→ u stabilizes such that perturbations decay on a time horizon h
of order 1 uniformly in [0, T ] (using the additional arguments in y to indicate initial time and initial condition for state x):

|y(t; t0, x1)− y(t; t0, x2)| ≤ C exp(−γ(t− t0))|x1 − x2| (3)

in (1) for γ > 0, C of order 1, independent of the period T . In this case perturbations at time t0 do not have noticeable
influence anymore at time t0+h (where h is s.t. C exp(−γh)� 1). If criterion (3) is satisfied, we may choose for rgPN ,
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for example, the space of piecewise constant functions: [PNy](t) = T/N
∫ t`
t`−1

y(s)ds =: y` if t ∈ J` = [t`−1, t`),
where t` = `T/N . The variable for the nonlinear problem (2) is then (y1, . . . , yN , µ), and (2) poses an equation on each
interval J`. Due to the finite-time decay condition (3), [∂/∂y`]PNY |Jν is small if the distance between ν and ` satisfies
|ν − `| > hN/T =: q = O(1). Hence the Jacobian ∂PNY/∂yP has only q non-zero diagonals. This implies that
deviations δy` and δyν can be applied simultaneously if |`− ν| > q when determining the finite difference approximation
for ∂PNY/∂yP . Consequently, the fixed point problem (2) with a projection PN chosen such that the Picard iteration is
linearly stable on rg[I −PN ] can be solved with a (computational or experimental) effort that grows linearly in the period
T because the number of necessary evaluations of Y is independent of the period T .

Example — quasiperiodically forced delay differential equation (DDE) modelling the Mid-Pleistocene transition
We demonstrate the feasibility for a simple quasiperiodically forced model for palaeoclimate ice ages, modelling the
Mid-Pleistocene transition, which is a simplification of a model originally proposed by Saltzman & Maasch, see [3, 4],

dx(t) =
[
−px(t− τ) + rx(t)− sx(t− τ)2 − x(t− τ)2x(t)− aI(t)

]
dt+ σdWt, (4)

for the global ice mass anomaly x over the last 2 million years. Quinn et al [3, 4] observed that the forcing by variability
of solar insolation I(t), shown in fig. 1(top-left), causes a transition at time tc from small-amplitude fluctuations around
an equilibrium (at x = −0.5) to a large-amplitude limit cycle for forcing amplitudes a greater than some critical value ac
(ac = 0.1 for transitions without noise). The time tc is close to where the Mid-pleistocene transition from rapid to slow
ice ages occurrs in data sets. Continuation of the saddle and the attractor for positive a without noise (using DDE-Biftool)
shows that the two non-autonomous trajectories pinch at tc. In the infinite-time limit, saddle and node form a strange non-
chaotic attractor at the critical amplitude ac. We track the saddle for the non-autonomous system (enforcing artificially
periodic boundary conditions) as a test case for the control-based continuation of complex time profiles with random
disturbances of size σ. Feedback control was trivially applicable by adding it to the solar insolation: aI(t) + k[yr − y],
where output y = x. A typical time profile is shown (in red) in fig. 1(bottom-left), the partial bifurcation diagram is in
fig. 1(bottom-right). Note that saddle and node do not form a smooth saddle-node near a = ac without noise.
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Figure 1: (top-left) Solar insolation I(t) at 65◦ degree North in the summer [4]; (bottom-left) nonautonomous attractor and saddle,
and large-noise (σ = 6 × 10−3) trajectory illustrating transition near time tc, caused by saddle-node pinching; (top-right) approx-
imate dx/dt illustrating magnitude of disturbance; (bottom-right) partial bifurcation diagram for value of saddle and attractor at tc.
Parameters as in [3]: p = 0.95, r = s = 0.8, τ = 1.31, Euler-Maruyama scheme stepsize 0.1, σ = 3× 10−3, N = 200, gain k = 2.

Potential future experimental test cases are forced mechanical single-degree-of-freedom oscillators with hardening non-
linearity where one may track connecting orbits caused by brief spikes of the forcing amplitude.
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