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Summary. The direct spring operated pressure relief valves are prone to harmful vibrations, which endanger the protected system
under pressure. The studied mathematical model describes a system consisting of a vessel and of a pressure relief valve mounted on the
vessel. The mathematical model with the state variables of valve lift, valve disk velocity and vessel pressure shows strong asymmetric
nonlinearities. Our adapted numerical simulation is appropriate to produce bifurcation diagrams with the bifurcation parameter of the
inlet flow rate, and also to draw the phase portrait. At the certain range of parameter combinations the equilibrium state loses the
stability through subcritical Hopf bifurcation. In the case of dense parameter sweep in the phase space an unstable limit cycle appears
between the trajectories. This unstable limit cycle can be calculated analytically by executing the Hopf bifurcation calculation. In
comparison with the numerical unstable limit cycle, we studied the effect of the asymmetry of the nonlinearties on the analytically
calculated unstable limit cycle. Global bifurcation diagram is constructed to trace the dynamical behaviour of the system ’outside’ the
unstable limit cycle, which includes impacts with the valve seat.

Introduction

The mathematical model of the direct spring operated pressure relief valve (see Fig. 1a) can be derived from the Newtonian
equation of the valve disk and from the mass balance equation of the vessel [1]:

y′1 = y2 , (1)
y′2 = −κy2 − (y1 + δ) + y3 , (2)
y′3 = β (q −√y3y1) , (3)

where the dimensionless coordinates y1,2,3 represent the valve lift, the valve disk velocity and the overpressure in the
vessel, respectively. The dimensionless parameters are the inlet flow rate q, the damping coefficient κ, the opening
pressure δ, and stiffness β of the fluid, which are obtained from the physical parameters in Fig. 1a according to the
following formulas:
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During operation, only the flow rate q can change, which is chosen as bifurcation parameter. The volume V of the vessel
is inversely proportional to the β, and it has an essential influence on the stability of the equilibrium state and also on the
type of stability loss. Figure 2a shows a stability diagram of the equilibrium in the plane of the parameters q and β. It
can be seen that the system is stable for small and large β values. We study the loss of stability at β = 10, which belongs
to the small vessel volume. For this data the bifurcation diagram is shown in Figure 2b. The analytically calculated and
numerically checked critical flow rate value at the Hopf bifurcation is qcr = 5.930.

(a) Mechanical model (b) Stability chart for κ = 0.7 , δ = 3 (c) Bifurcation diagram for β = 10

Figure 1: Modelling, stability and bifurcations of the pressure relief valve
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Nonlinear analysis

The 3rd degree approximation of the system (1-3) around the equilibrium y10, y20, y30 has the form:
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At the bifurcation point, the linear part has the eigenvalues λ1,2 = ±iω, λ3 := λ ∈ <−. Since the nonlinearity is
strongly asymmetric, there are 2nd degree terms in Eq. (4). Consequently, the system has to be reduced to the centre
manifold that is approximated by 2nd degree terms, too. The centre manifold can be calculated in the eigenbasis of
coordinates (u1, u2, u3), and it is tangent to the plane spanned by the complex conjugate eigenvectors. The lengthy
algebraic calculation involves also the Near Identity transformation:[
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which leads to the 3rd order normal form for (v1, v2). This way, we obtain the Poincare-Lyapunov constant ∆ = 0.028 > 0,
which refers to subcritical Hopf bifurcation. The emerging unstable limit cycle has the amplitude:
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where the root tendency Reλ′1,2 = −0.046 < 0 can be calculated from the characteristic equation by implicit derivation
with respect to the bifurcation parameter q. Through a polar coordinate transformation v1 = r cos(ωτ), v2 = r sin(ωτ).
Transforming back only the linear part of Eq. (5) to the original phase space makes the calculation easier, and has a
sufficient result for symmetric systems [2], but Fig. 2b shows with dashed red line how this treatment effects the location
of the limit cycle for this strongly asymmetric case. The limit cycle can fit better to the numeric unstable limit cycle
when the 2nd degree terms are transformed back, too. After the polar coordinate transformation, the second degree terms
result in constant and sin(2ωτ), cos(2ωτ) terms multiplied by r2. If the linear system is shifted with this constant only,
then the unstable limit cycle is shown by red continuous line in Fig. 2b. The trace of the unstable limit cycle fits best by
transforming back also the 2nd degree terms, which is represented with red dots in Fig. 2b.

(a) Centre manifold (yellow), tangent plane (green), two numerical
trajectories (black), analytical limit cycle (red)

(b) A stable and an unstable numerical trajectories (black) embrac-
ing the unstable limit cycle (white) and analytical limit cycles with
3 different approximations (red)

Figure 2: Numerical and analytical results presented in the phase space of pressure relief valve

The global dynamics of the system ’outside’ the unstable limit cycle is determined by the impacts of the valve disk and
the seat. This is characterized by the numerical bifurcation diagram in Fig. 1c, which fits perfectly to the analytically
predicted unstable limit cycle.
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