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Phase resonance of an oscillator with polynomial stiffness
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Summary. This paper extends the linear concept of phase resonance, which occurs when the damping forces counterbalance exactly
the external forces, to oscillators with polynomial stiffness. To this end, a first-order averaging technique is applied to a one degree-of-
freedom oscillator with arbitrary polynomial stiffness. We show that phase resonance exists in the vicinity of amplitude resonance and is
associated with a phase resonance of π/2.

Introduction

Modal analysis has been, and continues to be, the dominant dynamical method used in structural design. The goal of
modal analysis is to find the vibration modes, resonance frequencies and damping ratios of the considered system [1].
One key assumption of modal analysis is linearity.
In linear theory, the resonant behavior of dynamical systems can be characterized either the amplitude or phase resonance.
Amplitude resonance corresponds to a relative maximum in the frequency response function whereas phase resonance is
associated with quadrature between the displacement and the external forcing. At phase resonance, the external forcing
cancels exactly the damping force with the result that the resonance frequency coincides with the natural frequency of the
linear system. The difference between the two resonances remains small for weakly damped systems.
However, real-world structures are intrinsically nonlinear because they may feature advanced materials, friction and con-
tact [2]. In this context, the present study proposes to extend the concept of phase resonance to oscillators with arbitrary
polynomial stiffness. To do so, a first-order averaging technique is applied to a one degree-of-freedom oscillator and we
show that phase resonance exists in the vicinity of amplitude resonance for a phase lag of π/2.

Oscillator with polynomial stiffness

The governing equation of motion of a harmonically-forced oscillator with arbitrary polynomial stiffness is

mẍ(t) + cẋ(t) + kx(t) +

n∑
d=2

kdx
d(t) = f sinωt (1)

where m, c, k and kd represent the mass, damping, linear and nonlinear stiffness coefficients, respectively. f is the forcing
amplitude whereas ω is the excitation frequency of period T . The natural frequency of the undamped, linearized system

is ω0 =
√

k
m . Through mass normalization, Equation (1) can be recast into:

ẍ(t) + 2ζ̄ ω0 ẋ(t) + ω2
0x(t) +

∞∑
d=2

αdx
d(t) = γ̄ sinωt (2)

where ζ̄ = c
2
√
km

, αd = kd/m and γ̄ = f/m.

An averaging technique

We consider a weakly nonlinear oscillator of the form:

ẍ(t) + ω2
0x(t) = εf(x(t), ẋ(t)) (3)

When ε = 0, the periodic solution of (3) is written as:

x(t) = u cosω0 t− v sinω0 t (4)

where u and v are constants. When ε ̸= 0, we seek a solution of frequency ω such that ω2 −ω0
2 = εΩ. The solution is

expressed as in Equation (4) but with time-dependent u and v:

x(t) = u(t) cosω t− v(t) sinω t (5)

We impose that the velocity should have the same form as in the case ε = 0, i.e.,

ẋ(t) = −u(t)ω sinω t− v(t)ω cosω t (6)

Equation (6) holds if:
u̇(t) cosω t− v̇(t) sinω t = 0 (7)
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Differentiating Equation (6) and replacing ẍ(t) and x(t) in Equation (3) yields:

u̇(t)ω sinω t+ v̇(t)ω cosω t = −ε [f(x(t), ẋ(t)) + Ωx(t)] (8)

Finally, taking into account Equations (7) and (8) and solving for u̇ and v̇, a system of first-order equations is obtained:{
u̇ = − ε

ω [f(x(t), ẋ(t)) + Ωx(t)] sinω t

v̇ = − ε
ω [f(x(t), ẋ(t)) + Ωx(t)] cosω t

(9)

This system has a suitable form to apply first-order averaging, which is performed herein using the Krylov-Bogolyubov
technique [3, 4], which consists in integrating these equations over one period of time T , during which u and v are
considered to be constants: {

u̇ = − ε
ω

1
T

∫ T

0
[f(x(t), ẋ(t)) + Ωx(t)] sinω t dt

v̇ = − ε
ω

1
T

∫ T

0
[f(x(t), ẋ(t)) + Ωx(t)] cosω tdt

(10)

Or alternatively, if we consider ω t = θ:{
u̇ = − ε

ω
1
2π

∫ 2π

0
[f(x(θ), ẋ(θ)) + Ωx(θ)] sin θ dθ

v̇ = − ε
ω

1
2π

∫ 2π

0
[f(x(θ), ẋ(θ)) + Ωx(θ)] cos θ dθ

(11)

Finally, x(t) is often represented using the polar coordinates r and ϕ such that x(t) = r(t) sin (ω t− ϕ(t)) with r =√
u2 + v2 and ϕ = atan2(−u,−v), where u = −r sinϕ and v = −r cosϕ. Furthermore, we can express the time

derivatives of r and ϕ as: {
ṙ = ∂r

∂u u̇+ ∂r
∂v v̇ = u

r u̇+ v
r v̇

ϕ̇ = ∂ϕ
∂u u̇+ ∂ϕ

∂v v̇ = v
r2 u̇− u

r2 v̇
(12)

For conciseness, the time dependence for u, v, r and ϕ is dropped in the remainder of this chapter.

First-order averaging of an oscillator with polynomial stiffness

Scaling of the equation of motion
Considering Equation (2), we scale the system such that ζ̄ = εζ, ᾱd = εαd and γ̄ = εγ, with ζ, α, γ = O(1), we obtain
a weakly nonlinear oscillator:

ẍ(t) + ω2
0x(t) = ε

(
γ sinωt− 2ζ ω0 ẋ(t)−

∞∑
d=2

αdx
d(t)

)
(13)

Assuming a forcing frequency in the vicinity of the natural frequency of the linear system, i.e., ω2 −ω0
2 = εΩ, we can

apply an averaging technique and the displacement as explained in Section . This consists in solving:{
u̇ = − ε

ω
1
2π

∫ 2π

0

[(
γ sin θ − 2ζ ω0 ẋ(θ)−

∑∞
d=2 αdx

d(θ)
)
+Ωx(θ)

]
sin θ dθ

v̇ = − ε
ω

1
2π

∫ 2π

0

[(
γ sin θ − 2ζ ω0 ẋ(θ)−

∑∞
d=2 αdx

d(θ)
)
+Ωx(θ)

]
cos θ dθ

(14)

For clarity, the different terms are analysed separately, i.e., the forcing, damping, frequency and stiffness terms.
Furthermore, to solve these integrals, we make use of the fact that:∫ 2π

0

cosa θ sinb θ dθ =
1

2
[(−1)a + 1]

[
(−1)b + 1

] Γ (a2 + 1
2

)
Γ
(
b
2 + 1

2

)
Γ
(
a
2 + b

2 + 1
2

) (15)

which is always equal to 0 if either a or b is odd. Therefore, we can write:

1

2π

∫ 2π

0

cos2n θ sin2m θ dθ =
1

π

Γ
(
n+ 1

2

)
Γ
(
m+ 1

2

)
Γ
(
n+m+ 1

2

) (16)

where Γ is the Gamma function.

Forcing term
For u̇ and v̇, we have respectively:

1

2π

∫ 2π

0

γ sin2 θ dθ =
γ

2
(17)

and
1

2π

∫ 2π

0

γ cos θ sin θ dθ = 0 (18)
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Damping term
For u̇ and v̇, we have respectively:

− 1

2π

∫ 2π

0

2ζ ω0

(
−uω sin2 θ − v ω cos θ sin θ

)
dθ = ζ ω0 ω u (19)

and

− 1

2π

∫ 2π

0

2ζ ω0

(
−uω cos θ sin θ − v ω cos2 θ

)
dθ = ζ ω0 ω v (20)

Frequency term
For u̇ and v̇, we have respectively:

1

2π

∫ 2π

0

Ω
(
u cos θ sin θ − v sin2 θ

)
dθ = −Ω v

2
(21)

and
1

2π

∫ 2π

0

Ω
(
u cos2 θ − v cos θ sin θ

)
dθ =

Ωu

2
(22)

Polynomial stiffness terms
For u̇ and v̇, we need to solve respectively:

−
∞∑
d=2

1

2π

∫ 2π

0

αd (u cos θ − v sin θ)
d
sin θ dθ (23)

and

−
∞∑
d=2

1

2π

∫ 2π

0

αd (u cos θ − v sin θ)
d
cos θ dθ (24)

To do so, we need to expand the polynomial term using the binomial expansion:

(u cos θ − v sin θ)d =

d∑
p=0

(
d

p

)
(u cosϕ)d−p(−v sin θ)p (25)

which thus gives for u̇ and v̇, respectively:

−
∞∑
d=2

αd

d∑
p=0

(
d

p

)
ud−p(−v)p

1

2π

∫ 2π

0

cosd−p θ sinp+1 θ dθ (26)

and

−
∞∑
d=2

αd

d∑
p=0

(
d

p

)
ud−p(−v)p

1

2π

∫ 2π

0

cosd−p+1 θ sinp θ dθ (27)

The result of the integrals depends on the parity of the exponents of the sine and cosine terms and the different possibilities
are studied hereafter.

Case 1: d and p are odd.
In this case, we set d = 2i+ 1 and p = 2j + 1. For u̇ we have:

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ ̸= 0 (28)

for which the result depends on the values of i and j. For v̇, we have:

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j+1 θ dθ = 0 (29)

since both exponents are odd.
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Case 2: d is odd and p is even.
In this case, we set d = 2i+ 1 and p = 2j. For u̇ we have:

−
∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j+1 θ dθ = 0 (30)

since both exponents are odd. For v̇, we have:

−
∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ ̸= 0 (31)

for which the result depends on the values of i and j.

Case 3: d and p are even.
In this case, we set d = 2i and p = 2j. For u̇ we have:

−
∞∑
i=0

α2i

i∑
j=0

(
2i

2j

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j) θ sin2j+1 θ dθ = 0 (32)

since one of the exponents is odd. For v̇, we have:

−
∞∑
i=0

α2i

i∑
j=0

(
2i

2j + 1

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j θ dθ = 0 (33)

since one of the exponents is odd.

Case 4: d is even and p is odd.
In this case, we set d = 2i and p = 2j + 1. For u̇ we have:

∞∑
i=0

α2i

i∑
j=0

(
2i

2j + 1

)
u2(i−j)−1v2j+1 1

2π

∫ 2π

0

cos2(i−j)−1 θ sin2(j+1) θ dθ = 0 (34)

since one of the exponents is odd. For v̇, we have:
∞∑
i=0

α2i

i∑
j=0

(
2i

2j + 1

)
u2(i−j)−1v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2j+1 θ dθ = 0 (35)

since one of the exponents is odd.

Summary:
Therefore, we end up with:

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ (36)

and

−
∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ (37)

for u̇ and v̇, respectively. We thus observe that the stiffness of even orders do not participate in the motion around the
primary resonance at first order.

Averaged solution around the primary resonance
The average solution for u̇ is therefore:

u̇ = − ε

ω

γ

2
+ ζ ω0 ω u− Ω v

2
+

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

 (38)

and for v̇:

v̇ = − ε

ω

ζ ω0 ω v +
Ωu

2
−

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

 (39)

Those equations can be gathered in order to get ṙ and ϕ̇ using the relations from Equation 12. However, this leads to
complex expressions and it is interesting to see if the effect of the polynomial stiffness can be simplified.



ENOC 2020+2, July 17-22, 2022, Lyon, France

Solution for ṙ

First, for ṙ, it is possible to show that when we use the relation: uu̇+ vv̇, then we have for the polynomial stiffness terms:

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)+1v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

−
∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j+1 1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ = 0

(40)

Taking out the constant terms, we end up with:

i∑
j=0

u2(i−j)+1v2j+1

2π

((
2i+ 1

2j + 1

)∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ −
(
2i+ 1

2j

)∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

)
= 0 (41)

and therefore, we need to prove that(
2i+ 1

2j + 1

)∫ 2π

0

cos θ2(i−j) sin2(j+1) θ dθ −
(
2i+ 1

2j

)∫ 2π

0

cos θ2(i−j+1) sin2j θ dθ = 0 (42)

in order to show that Equation (40) is valid.
The first step is to use the results of the integrals from Equation (16) and rewrite Equation (42) as:

2

Γ(i+ 2)

((
2i+ 1

2j + 1

)
Γ(i− j +

1

2
)Γ(j + 1 +

1

2
)−

(
2i+ 1

2j

)
Γ(i+ 1− j +

1

2
)Γ(j +

1

2
)

)
(43)

After that, we can make use of the following property of the Gamma function:

Γ(n+
1

2
) =

(
n− 1

2

n

)
n!
√
π (44)

for non-negative integer values of n, as well as the following binomial coefficient property:(
n

k

)
=

n− k + 1

k

(
n

k − 1

)
(45)

to rewrite Equation (43) as

2π

Γ(i+ 2)
(i− j)!j!

(
i− j − 1

2

i− j

)(
j − 1

2

j

)(
2i+ 1

2j

)(
2i− 2j + 1

2j + 1
(j +

1

2
)− (i− j +

1

2
)

)
= 0 (46)

which proves the relation from Equation (40).
Finally, we can write for ṙ:

ṙ = − ε

ωr

(
ζ ω0 ω r2 − γ

2
r sinϕ

)
(47)

Solution for ϕ̇

In the case of ϕ̇, we need to use the relation vu̇ − uv̇ and therefore, the terms related to the polynomial stiffness can be
written as:

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)+1v2(j+1) 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

+

∞∑
i=1

α2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j+1)v2j+1 1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

(48)

which can be simplified and written under the form:

∞∑
i=1

α2i+1C

i+1∑
j=0

(
i+ 1

j

)
u2(i+1−j)v2j =

∞∑
i=1

α2i+1C(u2 + v2)i+1 =

∞∑
i=1

α2i+1Cr2(i+1) (49)

where C is a constant to be determined. To demonstrate this, we need to show that:
i∑

j=0

1

2π

((
2i+ 1

2j + 1

)
u2(i−j)v2(j+1)

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ +

(
2i+ 1

2j

)
u2(i−j+1)v2j

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

)
(50)

= C

i+1∑
j=0

(
i+ 1

j

)
u2(i+1−j)v2j
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First, we rearrange the left hand side of Equation (51) such that:(
2i+ 1

0

)
u2(i+1) 1

2π

∫ 2π

0

cos2(i+1) θ dθ (51)

+

(
2i+ 1

1

)
u2iv2

1

2π

∫ 2π

0

cos2i θ sin2 θ dθ +

(
2i+ 1

2

)
u2iv2

1

2π

∫ 2π

0

cos2i θ sin2 θ dθ

+ . . .

+

(
2i+ 1

2k − 1

)
u2(i+1−k)v2(k)

1

2π

∫ 2π

0

cos2(i+1−k) θ sin2k θ dθ +

(
2i+ 1

2j

)
u2(i+1−k)v2k

1

2π

∫ 2π

0

cos2(i+1−k) θ sin2k θ dθ

+ . . .(
2i+ 1

2i+ 1

)
v2(i+1) 1

2π

∫ 2π

0

sin2(i+1) θ dθ

Or simply:(
2i+ 1

0

)
u2(i+1) 1

2π

∫ 2π

0

cos2(i+1) θ dθ (52)

+

i∑
j=1

((
2i+ 1

2j − 1

)
+

(
2i+ 1

2j

))
u2(i+1−j)v2j

1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ

(
2i+ 1

2i+ 1

)
v2(i+1) 1

2π

∫ 2π

0

sin2(i+1) θ dθ

Which can be further simplified by making use of the fact that first:(
2i+ 1

2j − 1

)
+

(
2i+ 1

2j

)
=

(
2(i+ 1)

2j

)
(53)

and second: (
2i+ 1

0

)
=

(
2i+ 1

2i+ 1

)
= 1 =

(
2(i+ 1)

0

)
=

(
2(i+ 1)

2(i+ 1)

)
(54)

which leads to
i+1∑
j=0

(
2(i+ 1)

2j

)
u2(i+1−j)v2j

1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ (55)

The final step consists in showing that:(
2(i+ 1)

2j

)
1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ = C

(
i+ 1

j

)
(56)

To do so, we make use of the fact that a binomial coefficient can be written using the Gamma function:(
n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
(57)

Furthermore, using the results from Equation (16), we can write the left hand side of Equation (56) as:

1

π

Γ(2z1)

Γ(2z3)Γ(2z2)

Γ(z2)Γ(z3)

Γ(z1 +
1
2 )

(58)

where z1 = i+ 1 + 1
2 , z2 = i+ 1− j + 1

2 and z3 = k + 1
2 . Using the Legendre duplication formula:

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z) (59)

it is possible to rewrite Equation (58) as:

Γ(2i+ 3)

22(i+1)Γ2(i+ 2)

(
i+ 1

j

)
= Ci

(
i+ 1

j

)
(60)

where Ci = Γ(2i+3)
22(i+1)Γ2(i+2)

is a constant that only depends on i. Therefore, we can indeed rewrite Equation (48) as

Equation (49). Finally, we can write for ϕ̇:

ϕ̇ = − ε

ω r2

( ∞∑
i=1

α2i+1Cir
2(i+1) − Ω

2
r2 − γ

2
r cosϕ

)
(61)
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Solution at steady-state
Since we are interested in solutions at steady-state, we have ṙ = ϕ̇ = 0 and therefore{

r = γ
2ζ ω0 ω sinϕ∑∞

i=1 α2i+1Cir
2i+1 − Ω

2 r = γ
2 cosϕ

(62)

where the first relation shows that the amplitude r does not directly depend on the nonlinear stiffness coefficients αd. This
relation also confirms that even order stiffness do not participate in the motion around the primary resonance.

Amplitude and phase resonances
Amplitude resonance occurs when both ∂r

∂ ω and ∂r
∂ϕ are equal to 0. From Equation (62), we obtain:

∂r
∂ϕ = γ

2ζ ω0 ω

(
cosϕ− sinϕ

ω
∂ ω
∂ϕ

)
= 0

∂r
∂ ω = γ

2ζ ω0 ω

(
cosϕ ∂ϕ

∂ ω − sinϕ
ω

)
= 0

(63)

where
∂ϕ

∂ ω
= − 2

γ sinϕ

( ∞∑
i=1

α2i+1Ci(2i+ 1)r2i
∂r

∂ ω
− 1

2

(
2ω

ε
r +

ω2 −ω0
2

ε

∂r

∂ ω

))
(64)

Eventually, we have

∂r

∂ ω
=

γ2 sin2 ϕ (ω−εζ ω0 tanϕ)(
2(ω0

2 −ω2)ζ ω0 ω+ε
(
2γ2ζ2 ω0

2 ω2 cosϕ+
∑∞

i=1 α2i+1Ci(2i+ 1) (γ sinϕ)2i+1

(2ζ ω0 ω)2i−1

)) = 0 (65)

This relation is verified when:
tanϕa =

ωa

εζ ω0
(66)

Since we consider a small damping ratio ζ̄ = εζ, the phase lag ϕa at amplitude resonance is very close to π
2 .

On the other hand, phase resonance for linear and nonlinear systems occurs when the external forcing counterbalances
exactly the damping forces [5]. From the first equation in Equation (62), we see that this happens when the phase lag is
π/2. Phase resonance thus occurs in the immediate vicinity of amplitude resonance.

Numerical validation on a Helmholtz-Duffing oscillator

The previous results are applied to a Helmholtz-Duffing oscillator governed by the following equation:

ẍ(t) + 2ζ̄ ω0 ẋ(t) + ω2
0x(t) + β̄x2(t) + ᾱx3(t) = γ̄ sinωt (67)

According to Equation 62, first-order averaging around the primary resonance gives{
r = γ

2ζ ω0 ω sinϕ
3α
8 r3 − Ω

2 r = γ
2 cosϕ

(68)

Setting β̄ = 0.05 N/(kg m2), ᾱ = 0.05 N/(kg m3) and ζ̄ = 0.005, the numerical solution using a harmonic balance
continuation procedures with 8 harmonics is compared to the analytical solution from Equation (68) in Figure 1. The two
methods give very similar results around the primary resonance. In addition to that, the phase resonance points, which
correspond to a phase lag of π

2 for the first harmonic component of the solution, is also plotted and both techniques show
that it is indeed in the vicinity of the amplitude resonance.
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(a) (b)

Figure 1: Nonlinear frequency responses (Numerical: black, analytical: green) around the primary resonance of the
Helmholtz-Duffing oscillator for forcing amplitudes γ̄ of 0.001N, 0.005N and 0.01N: (a) amplitude and (b) phase lag.
The red (numerical) and green (analytical) dots correspond to a phase lag of π

2 .

Conclusion

A first-order averaging technique was applied around the primary resonance of an oscillator with arbitrary polynomial
stiffness. The results show that phase resonance associated with a phase lag of π

2 exists in the immediate neighborhood
of amplitude resonance in the case of weak damping. These results are in agreement with those of Peeters et al. [5] and
Haller et al. [6].
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