
 

 

ENOC 2020, July 5-10, 2020, Lyon, France 

 

 

 Escape Dynamics of a Parametrically Excited Particle from an Infinite Range Potential 
 

 K. R. Jayaprakash
 *
, Oleg Gendelman

**
 

*
Discipline of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India 

**
Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel  

  

Summary. The current papers dwells on the classical problem of escape from a potential well. The considered potential well in this 

study is infinite range, with one global minimum and reaching maximum asymptotically at infinity. The particle is parametrically 

excited and we consider the threshold of escape of this particle from the bottom of the well. The analytical study is based on invoking 

the canonical action-angle variables and the averaged dynamics on a resonance manifold. 

Introduction 

The oscillatory behavior of a dynamical system is governed by the potential to which the system is subjected to. In 

order to study the dynamics of the system close to the center (local minimum in a conservative system), one could 

linearize the system and add the nonlinear terms as weak perturbations. However, such quasilinear dynamical systems 

seldom model the behavior away from the center. For example, the classical case of escape dynamics of a forced 

particle from a potential well can hardly be analytically studied using a weakly nonlinear model, since problem of 

escape is essentially a transient phenomenon. Such problem are plenty in the domain of applied physics and engineering 

and have been quite extensively studied [1]. From an engineering perspective, the dynamical behavior of capsizing of 

sea vessels is provided by Virgin [2], whereas the dynamic pull-in and the escape dynamics thereof in MEMS devices 

were reported by Younis et al. [3], studies by Virgin et al. [4] considers escape from a well under harmonic excitation, 

while Mann [5] considers an energy-based criterion for escape from the double well of a magnetic pendulum. Recent 

studies by Gendelman et al. [6, 7] invoke the canonical action-angle (AA) variables and averaging [8] to study the 

escape. Current study is based on the framework of AA variables.  

As such, an analytical prediction of the particle escape from the potential well becomes quite relevant. We consider an 

undamped particle oscillating in an infinite-range potential. The minimum of the well is Lyapunov stable and the fixed 

point persists even with the application of parametric excitation. However, the excitation can render the fixed point 

unstable, but may not necessarily lead to escape. In contrast, for certain parameter range (excitation frequency and 

amplitude) one can observe escape (ref. Fig. 1) of the particle. The objective herein is to numerically and analytically 

study the parameter range of amplitude and frequency that leads to escape and the route thereof. The escape is 

characterized by breaching of the separatrix (connecting the two fixed points at       ) as shown in Fig. 1. 
 

Mathematical modeling and analysis 

Consider the dynamics of a parametrically excited (amplitude   and frequency  ) particle in an infinite-range potential 

   
       

  
            

             

         
     

  

We are interested in the transition values of       that would render a particle situated close to the bottom (but not 

exactly at the bottom) of the well to escape. To this end, we introduce the AA (   ) variables and the canonical 

transformation resulting in                  . The perturbed Hamiltonian in AA variables is 
 

                                             
 

Where                                and     corresponds to the bottom of the well. Since        is 

   periodic, the perturbation term in Eq. 2 can be expanded in Fourier series. We consider     resonance and thereby 

introduce slow phase variable        . On averaging the slow-flow equation corresponding to the evolution of AA 

variables over the fast phase variables, we have the averaged (       ) slow-flow equations in the form, 
 

                        
    

                                
 

The fixed points of the slow-flow equations are readily calculable to be (i)                    , (ii)   
                (iii)                                             respectively. The fixed 

point at           is a center and            is a saddle for    . For a specific value of    , with an 

increase in the excitation amplitude, the saddle goes through a pitchfork bifurcation and there is emergence of two 

additional fixed points (i). Upon bifurcation, fixed point at            is a center, but not of much significance. 

The bifurcations would become apparent by investigating the integral of motion of the averaged system given by 
 

                                           
 

The bifurcation point corresponds to the threshold of the excitation amplitude resulting in escape. The locus of these 

points is shown in Fig. 2 as red curves (     ,      ) emanating from    . Incidentally, these curves also 

correspond to the instability boundary of the Mathieu equation                    , resulting from the 

linearization of Eq. 1 about      . The escape threshold for the exact system (Eq. 1) is indicated as     ,     . As 

observable, there is the close match of the       and     . However, the right boundary shows a very distinct transition 

wherein the averaged system predicts a much lower escape threshold in comparison to the actual dynamical system (Eq. 
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1). It is noted that along the boundary predicted by the averaged system, the center corresponding to the bottom of the 

potential well bifurcates to a saddle. This is evidenced by the Poincare maps of Fig. 3 (     ). In fact, along     , the 

creation of this saddle leads to the particle escape. In contrast, in the regions other than     , the creation of the saddle 

(along            ) leads to chaotic motion albeit bounded. On further increase in the excitation amplitude, the tori 

are broken and the particle escapes. This behavior is observable in the Poincare maps of Fig. 4 (     ). The minimum 

force amplitude required for the escape corresponds to a frequency              and is owing to the fact that Eq. 1 

exhibits softening nonlinearity. 
 

  
Figure 1: Particle escape from the bottom                  
0 of the potential well for  =0.41, =1.8. (Broken red curves 

correspond to the separatrix) 

Figure 2: Escape threshold. Blue shaded region (num. simulation 

of Eq. 1) corresponds to particle escape (for       ). The red 

lines emanating from     correspond to the point of 

bifurcation corresponding to Eq. 3 and those emanating from 

    correspond to the Mathieu equation described above 
 

 
 

Figure 3: Poincare maps corresponding to       (left panel)       (right panel)        
 

   
Figure 4: Poincare maps corresponding to       (a)      , (b)      , (c)       (a-c refers to the points indicated in Fig. 2) 

Conclusions 

The current study considers the escape dynamics of a parametrically excited particle (located close to the bottom of the 

well) from an infinite-range potential. We invoke the AA variables and study the dynamics of the system on the 

resonance manifold and predict the threshold for escape as a function of frequency. For certain      , the bifurcation of 

the bottom of the well to a saddle leads to the escape, whereas for other parametric range, the escape is through a 

chaotic route as evidenced by the Poincare maps and the slow-flow model fails to predict the escape in this case. 
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