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Summary. The model of a two-mass-skate (TMS) bicycle is reconsidered from the point of view of optimization of its self-stability,
i.e. asymptotic stability of its vertical position in a uniform straight motion with respect to small perturbations of its leaning and steering
angles. The critical Froude number for the onset of the self-stability is found explicitly. Minimization of the spectral abscissa is then
performed yielding a new scaling low that links together the geometric and the mass parameters of the TMS bicycle. The scaling law
fits well the relations between the geometric and mass parameters of a recent experimental realization of the TMS bicycle. Modification
of the TMS model by including into it a mass moving periodically in the direction perpendicular to the frame of the bicycle is discussed
as a step to understand nonholonomic acceleration of bicycles when riding out of the saddle.

Self-stability of bicycles and its optimization

The bicycle is easy to ride, but surprisingly difficult to model. Refinement of the mathematical model of a bicycle has con-
tinued over the last 150 years with contributions from Rankine, Boussinesq, Whipple, Klein, Sommerfeld, Appel, Synge
and many others [1, 2, 3]. The canonical, nowadays commonly-accepted model goes back to the 1899 work by Whipple
[1, 4, 5]. The Whipple bike is a system consisting of four rigid bodies with knife-edge wheels making it non-holonomic,
i.e., requiring for its description more configuration coordinates than the number of its admissible velocities.

Self-stability of a riderless bicycle is a well-known empirical phenomenon that can be easily reproduced in an experi-
ment with the majority of known practical designs of bicycles. Namely, a bicycle in its uniform motion along a straight
path keeps the vertical position of the plane of its frame under small perturbations if its forward speed is high enough.
Moreover, perturbations of its leaning and steering angles die out, so that one can say about asymptotic self-stability of
the vertical position of the bicycle. The fact of the asymptotic self-stability has been theoretically supported already by
Whipple [1]. The self-stability has a number of important practical implications. For instance, the bicycle designs that
do not present the self-stability are difficult for a person to ride; in other words, more stable bikes handle better. Hence,
deeper understanding of the passive stabilization can provide new principles for the design of more safe and rideable bi-
cycles, including compact and foldable models. Furthermore, it is expected to play a crucial part in formulating principles
of the design of energy-efficient wheeled and bipedal robots [6].

However, the theoretical explanation of the self-stability has been highly debated throughout the history of bicycle dy-
namics to such an extent that a recent news feature article in Nature described this as “the bicycle problem that nearly
broke mathematics™ [7]. The reason as to why “simple questions about self-stabilization of bicycles do not have straight-
forward answers” [8] lies in the symbolical complexity of the Whipple model that contains 7 degrees of freedom and
depends on 25 physical and design parameters [2]. In recent numerical simulations [1, 4, 5], self-stabilization has been
observed for some benchmark designs of the Whipple bike. These results suggested further simplification of the model
yielding a reduced model of a bicycle with vanishing radii of the wheels (which are replaced by skate blades), known as
the two-mass-skate (TMS) bicycle [3, 9, 10]. Despite the self-stable TMS bike having been successfully realized in recent
laboratory experiments [3], its self-stability still awaits a theoretical explanation. In this lecture we find explicitly the
critical Froude number for the onset of-self-stability of the TMS bicycle and will show how minimization of the spectral
abscissa [11, 12] allows one to find hidden symmetries in the model, suggesting further reduction of the parameter space
and, finally, providing explicit relations between the parameters of stability-optimized TMS bikes [13, 14].

Nonholonomic acceleration due to honking or riding out of the saddle

Honking means cycling out of the saddle. Cyclists use this way of riding to accelerate. In this process, the body of the cy-
clist moves rhythmically side to side with respect to the plane of the bicycle, while the frame of the bicycle rocks or sways
with respect to the vertical position. It is known, however, that the commonly accepted modern bicycle models, stemming
from the Whipple model of 1899, are non-holonomic and conservative. On one hand, this implies the conservation of
energy, and on the other, non-conservation of the phase volume, which results in the possibility of the asymptotic stability
of a straight vertical position of a bicycle that is riding along a straight path if the forward velocity is high enough, which
is a well-known empirical fact [2, 3]. A natural question is: where the energy of dying leaning and steering motions flows?
Actually, the energy in the lean and steer oscillations is transferred via a nonlinear coupling to the forward speed rather
than being dissipated, as it was shown in numerical simulations in [2]. This effect suggests a method of acceleration of
the bicycle due to periodic movements of a mass in the direction perpendicular to the plane of the frame of the bicycle.
It can therefore be conjectured that when cycling out of the saddle, the periodical movement of the cyclist’s mass pumps
energy into the forward motion leading to the desired acceleration.

Recently, acceleration due to a periodic motion of an internal mass has been theoretically discovered in a non-holonomic



ENOC 2020, July 5-10, 2020, Lyon, France

Chaplygin sleigh model [15, 16] and linked to the mechanism of acceleration of particles moving between periodically
oscillating walls in the Fermi-Ulam model [17]. In the present talk we will discuss the ways of extending the model
of a TMS bicycle to take into account a periodically moving mass for investigation of the nonholonomic Fermi-like
acceleration during cycling out of the saddle.
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