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Summary. This work presents a novel approach towards synchronization analysis of nonlinear systems, diffusively coupled via
a networked communication channel. The system under consideration is a two-agent nonlinear system, under the constraint that
information is transmitted between the two systems using an aperiodic communication strategy. The system setting is remodelled as
the feedback-interconnection of a continuous-time system, and an operator that captures the perturbations introduced by communication
constraints. By studying the properties of the remodelled system, i.e., the feedback-interconnection, in the framework of Dissipativity
Theory, we provide a novel stability criterion that guarantees exponential synchronization.

Introduction

In many natural and practical circumstances, the phenomenon of synchronization has caught the attention of researchers
and scientists from various fields. Typical examples include flashing fireflies, firing neurons, etc. In control theory,
synchronization is a topic of interest in areas such as master-slave synchronization of nonlinear systems [Nijmeijer and
Mareels, 1997]. In practical applications such as cooperative control of multi-agent systems [Olfati-Saber et al., 2007],
synchronization can be analyzed with a control theoretic approach for networks of nonlinear systems [Pogromsky et al.,
2002]. In such contexts, synchronization problems become more complex due to uncertainties introduced via the net-
worked communication channel. For example, delays introduced in the network increase the complexity of synchroniza-
tion problems [Steur and Nijmeijer, 2011]. In addition to delays, individual systems could be connected via sampled-data
coupling.
In recent years, master-slave synchronization problems of linear sampled-data systems have been studied, and different
approaches have been proposed to study the relation between sampling period, coupling strength, and synchronization
[Hua et al., 2015]. In existing results, it is typically considered that individual systems have the same sampling frequency.
However, in practical scenarios, individual systems usually transmit information at different frequencies over a network,
depending upon the communication channel, data traffic, etc. In this work, we consider a bidirectionally coupled, sampled-
data, two-agent nonlinear system, wherein individual systems transmit information over a networked communication
channel, at possibly different, aperiodic frequencies.

Problem Statement

We consider a two-agent interconnected system as shown in Figure 1a, wherein the dynamics of individual sub-system
Σi, i = 1, 2, is of relative degree one, and is given by

ẋi(t) = f(xi(t)) +Bui(t),
yi(t) = Cxi(t), i = 1, 2,

(1)

where xi ∈ Rn, ui, yi ∈ Rm are the state, input, and output, respectively. The function f : Rn 7→ Rn is a sufficiently
smooth vector field, and B and C are matrices with appropriate dimensions, with CB =: b ∈ Rm×m, b being positive
definite and without loss of generality, diagonal. The ith output is transmitted to the jth sub-system only at instants given
by the sequence sik+1 = sik + hik, h

i
k ∈ [hi, h̄i], k ∈ N, i = 1, 2. Without loss of generality, we consider si0 = 0, i = 1, 2.

Assumption 1: The ith sub-system has access to local output information at time instants t = sjk, j 6= i, k ∈ N.
The aforementioned assumption reflects a practical scenario wherein individual systems can be sampled locally at a high
frequency, but data transmission over a networked communication channel occurs at a lower frequency, depending on
network induced constraints or requirements. Exploiting this assumption, we have that Σi, i = 1, 2, has access to local
information at instants sjk, j 6= i. Consequently, the synchronizing coupling is designed as

u1(t) = −σ(y1(s2
k)− y2(s2

k)),∀t ∈ [s2
k, s

2
k+1),

u2(t) = −σ(y2(s1
k)− y1(s1

k)),∀t ∈ [s1
k, s

1
k+1),

(2)

where σ ∈ R+ is the constant coupling strength. Since CB > 0, there exists a coordinate transformation so that the ith

sub-system dynamics are given by

Σi :

{
żi(t) = q(zi(t), yi(t)),

ẏi(t) = a(zi(t), yi(t)) + bui(t), i = 1, 2,
(3)
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(a) Bidirectionally coupled systems Σ1 and Σ2 under asynchronous
sampled-data transmission.

(b) System shown in Figure 1a represented as a
feedback-interconnection.

Figure 1: (a) Systems Σ1 and Σ2 coupled via a networked communication channel and, (b) an equivalent feedback-
interconnection representation.

where zi ∈ Rn−m, ui, yi ∈ Rm, q : Rn−m × Rm 7→ Rn−m, and a : Rn−m × Rm 7→ Rm.
Assumption 2: The solution of the closed-loop system (3), (2) is ultimately bounded.
Definition 1: The bidirectionally coupled system given by (3), (2) is said to synchronize if lim

t→∞
‖e(t)‖ → 0, where

e(t) =
[
eTy (t) eTz (t)

]T
, and ey(t) = y1(t) − y2(t), ez(t) = z1(t) − z2(t), for any initial conditions (z1(0), y1(0)) and

(z2(0), y2(0)).
Assumption 3: (Demidovich Condition [Pavlov et al., 2005]) There exists a positive definite matrix P ∈ R(n−m)×(n−m),
such that the internal state dynamics given by żi(t) = q(zi(t), yi(t)), i = 1, 2, satisfies

P
∂q

∂zi
(zi, yi) +

∂qT

∂zi
(zi, yi)P ≤ −δIn−m, P = PT > 0, δ > 0. (4)

In this work, we provide conditions that guarantee exponential synchronization of the coupled system (3), (2).

Main Result
The system (3), (2) shown in Figure 1a is remodelled such that the effects introduced due to aperiodic sampling are de-
coupled from the continuous-time network, as shown in Figure 1b. In Figure 1b, the operator G represents the dynamics
of the system (1) in the absence of sampling, i.e., G represents a ‘continuous-time’ version of the system (3), (2). Ad-
ditionally, the operator ∆ captures the error induced in the system due to asynchronous sampling. Consequently, the
feedback-interconnection shown in Figure 1b represents the bidirectionally coupled, sampled-data system configuration
shown in Figure 1a, by considering the effects of sampling as a perturbation to the continuous-time system operator G.
By studying the properties of the feedback-interconnection G − ∆, we provide conditions that guarantee exponential
stability of the error dynamics e(t), i.e., exponential synchronization of the system (3), (2). We adapt the result provided
in [Omran et al., 2016], wherein a dissipativity based framework was employed to prove asymptotic stability of nonlinear
systems with aperiodic sampled-data control. The properties of operator ∆ are characterized by a function S that satisfies∫ t

0

S(θ, ey(θ), φ{y1(θ), y2(θ), z1(θ), z2(θ)}, w(θ))dθ ≤ 0,∀t ≥ 0, (5)
where
S(t, ey(t), φ{y1(t), y2(t), z1(t), z2(t)}, w(t))

:= wT (t)Rw(t)− γ2(φ(y1(t), y2(t), z1(t), z2(t))− 2bσey(t) + bσw(t))TR(φ(y1(t), y2(t), z1(t), z2(t))
−2bσey(t) + bσw(t)),

(6)
with γ2 =

4(h̄2
1+h̄2

2)
π2 ,w(t) = (∆ėy)(t), and φ(y1(t), y2(t), z1(t), z2(t)) = a(z1(t), y1(t))−a(z2(t), y2(t)). For a positive

definite storage function V , if the condition
V̇ (e(t)) + αV (e(t)) ≤ e−αtS(t, ey(t), φ{y1(t), y2(t), z1(t), z2(t)}, w(t)),∀t ≥ 0, α > 0, (7)

holds, then the system setting given by (3), (2), synchronizes exponentially with a decay rate of at least α/2.
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