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Summary. In this work we present a method for controlled synchronization of networked nonlinear systems based on nonlinear
integral couplings. For a class of nonlinear systems and network topologies, this method allows one to design synchronizing nonlinear
couplings with noticeably lower coupling gains (understood in a nonlinear sense) than for the case of linear diffusive couplings. This
results in lower control values and energy consumption needed for synchronization as well as lower sensitivity to measurement noise.
The method is illustrated by application to synchronization of Hindmarsh-Rose oscillators.

Synchronization and nonlinear integral couplings

In this abstract we consider N identical nonlinear systems of the form

ẋi = f(xi) +Bui, yi = Cxi, i = 1, . . . N, (1)

with xi ∈ Rn, yi, ui ∈ R, C1 function f(x) and matrices B and C of appropriate dimensions. The problem of controlled
synchronization considered in this abstract is to find control laws for each ui such that for any initial conditions of the
closed-loop system, state vectors xi(t), i = 1, . . . , N are bounded and

|xi(t)− xj(t)| → 0, as t→∞, ∀i, j. (2)

For each system i, ui is allowed to depend on the system’s output yi and on the outputs yj of the systems j ∈ Ni, where
Ni is the set of systems that can communicate to system i. The setsNi specify the communication graph G for the network
(there is an edge from node j to node i if j ∈ Ni). It is required that for identical outputs y1 = y2 = . . . = yN , the
controls satisfy u1 = u2 = . . . = uN = 0, such that in exact synchrony the systems exhibit dynamics of the unforced
(with zero input) system (1).
In this work we propose synchronizing control laws ui in the form of nonlinear integral couplings:

ui =
∑
j∈Ni

∫ yj

yi

λ(s)ds, i = 1, . . . , N, (3)

where λ(s) ≥ 0, ∀s, is a nonlinear coupling gain—the main design parameter in this scheme. Note that (3) is a general-
ization of conventional linear diffusive coupling, which is obtained from (3) with constant λ(s) ≡ C.
Contrary to the linear diffusive coupling, nonlinear integral coupling (3) allows one to differentiate the coupling strength
depending on the location of the system’s outputs in space, applying higher coupling gains only where the systems’ non-
linearities counteract synchronization, while employing lower (or even zero) coupling gains where the nonlinearities do
not have significant negative effects on synchronization. From the closed-loop performance point of view, the immediate
consequences of this flexibility can be lower average synchronizing gains, lower coupling actions and energy needed to
achieve and maintain synchronization and, consequently, lower sensitivity to measurement noise in outputs yi. From the
analysis point of view, this can provide better estimates of what should be the minimal coupling needed for synchroniza-
tion. As couplings in physical, engineering and biological networked systems can have nonlinear nature (with their linear
approximation studied in diffusive coupling), such estimates can shed more light on how synchronization is or can be
achieved in such systems.

Main result

Let us first formulate notions and assumptions that delineate the considered class of systems (1) and the class of network
topologies. The first assumption specifies the class of systems (1).

Assumption 1 There exist P = PT > 0, R = RT > 0 and a scalar continuous function γ(s) such that

P
∂f

∂x
(x) +

∂fT

∂x
(x)P − 2CTCγ(Cx) ≤ −R, PB = CT , ∀x ∈ Rn, (4)

These conditions are satisfied for a class of incrementally minimumphase nonlinear systems [1]. Next, we formulate
conditions on the communication graph G. The conditions are linked to the notion of relaxed balanced coloring of the
nodes of G.
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Definition 1 A coloring of the nodes with k ∈ {1, . . . , N} colors c1,. . . , ck is called a relaxed balanced coloring if each
node is assigned a color, and every ci-colored node receives an equal number of edges from cj-colored nodes for all
j ∈ {1, 2 . . . , k}\{i}.
A communication graph can be colored according to relaxed balanced coloring in multiple ways. The two trivial colorings
are given by a) assigning each node an individual color and b) by assigning all nodes the same color. We call the graph
sequentially decolorable if there exists a sequence of N − 1 relaxed balanced colorings, starting from the coloring a) and
ending with coloring b), such that each coloring is obtained from the previous one by taking two groups of nodes with
two different colors are assigning them the same color. Examples of sequentially decolorable graphs include graphs with
two nodes with bi- and unidirectional couplings; bi-directionally coupled rings with 3 and 4 nodes, a graph with N nodes
with all-to-all couplings. There are algorithms that allow one to verify whether a graph is sequentially decolorable in a
computationally efficient way. Now we can formulate our main result.

Theorem 1 Consider N systems of the form (1) satisfying Assumption 1 and interconnected through nonlinear integral
coupling (3) with a sequentially decorolable communication graph G. Suppose the coupling gain function λ(s) satisfies

λ(s) ≥ max(0, γ(s)), ∀s ∈ R,
∫ +∞

−∞
λ(s)ds ≤ +∞. (5)

Then all solutions of the closed-loop system (1), (3) are bounded and satisfy (2).

Remark: The condition (5) can be relaxed by taking into account quantitative characteristics of communication graph.
For example, for a graph with N nodes and all-to-all interconnections, the first condition in (5) can be substituted by
λ(s) ≥ max(0, γ(s)/N).

Synchroniztion of Hindmarsh-Rose oscillators

We demonstrate our results with synchronization of Hindmarsh-Rose oscillators, which represent a simplified model of
neuron dynamics [2]:

ż1 = c− dy2 − z1, ż2 = ε(m(y + y0)− z2), ẏ = −ay3 + by2 + z1 − z2 + I + u, (6)

where y, z1 and z2 represent various states of a neuron and external stimulation is provided by input u. All other parame-
ters are positive constants. Analysis of synchronization in a network of such oscillators with linear coupling is presented
in [3]. For numerical simulations we choose the following values of system parameters: a = 1, b = 3, c = 1, d = 5,
m = 4, I = 2.8, y0 = 1.618, ε = 0.005 [3]. In this abstract, we consider 4 systems interconnected in the following
way: N1 = {2, 4}, N2 = {3}, N3 = {2, 4}, N4 = {1}. System (6) satisfies Assumption 1 with some P = PT > 0,
R = RT > 0 and γ(s) = ε − 3as2 + 2bs + (1−δds)2

2(δ−ε) , for any sufficiently small ε > 0 and, for the chosen system
parameters, with δ = 0.2, [1]. Thus, if we select λ(s) = max(0, γ(s)), the function λ(s) will satisfy (5) and, by Theorem
1 synchronization will be achieved. Simulations results are shown in Figure 1. The results demonstrate the synchronizing
system states yi, z1i, z2i and control inputs ui, i = 1, . . . 4. The last plot shows variable gain g12(t) of the nonlinear
integral coupling defined as g12(t) =

∫ y2(t)
y1(t)

λ(s)ds/(y2(t) − y1(t)), [1]. According to the simulations, the gain varies
from 3 down to 0. The higher coupling gain is applied whenever it is needed to achieve synchronization. It is reduced
and even set to zero in accordance with system’s dynamics while maintaining synchronization. The average gain over
the simulation of 500s equals 1.09 (shown as red dashed line in Figure 1). The lower coupling gains (instantaneous and
average) is a distinctive feature of the proposed method over linear diffusive couplings. The best estimate of the linear
diffusive coupling gain that we are aware of is 3, which can be computed using the results of [4].

Figure 1: Synchronization of 4 Hindmarsh-Rose oscillators.
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