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Summary. In this work, the implicit subspace iteration method is combinded with direct time integration of linear periodic delay
differential equations. The linear time complexity of the proposed method is shown for different DDE solvers with higher order
convergence. The propoesed method is really efficinet for dynamical system with large time period.

Semi-Discretization Method

There have been many algorithms [1, 5, 6, 7] developed during the last 20 years for systems where the time-delay effect
is coupled with parametric excitation. The semi-discretization method (SDM) is one of the efficient ways to the analyze
stability [1, 2]. The basic idea of the SDM is the numerical discretization of the delayed terms only above the delay-time
interval. Consequently, the governing DDE becomes an ordinary differential equation (ODE) that can be solved in closed
form in linear cases for each time step within these discrete delay-intervals, and a linear discrete map is constructed that
describes the connection of the discretized state as a large vector over the discrete time instants within the delay interval.
The size of this mapping depends on the resolution of the delay discretization.
If explicit time-periodicity also appears due to the parametric excitation, the time-periodic coefficients (or even the delays)
should also be discretized in time over the time period, and the above procedure leads to different linear mappings at each
sampled instant of the time period:

zi+1 = Gizi i = 0, 1, . . . n− 1 (1)

Here, Gi denotes the coefficient matrix connecting states zi and zi+1, which are the vectors of the discretized states
sampled at the discrete time intervals at subsequent time instants. A discrete map can be defined between the initial
delay-discrete state z0 and the one zm a principal period later:

zn = Gm−1 . . .G2G1G0z0 = Φz0, (2)

where the transition matrix Φ is a finite-dimensional approximation of the infinite-dimensional monodromy operator.
Thus, the stability analysis is reduced to the problem whether the absolute values of all the eigenvalues of Φ are less than
one: |µi| < 1. In order to improve numerical accuracy, the delay resolution, the order of semi-discretization, and the time
periodicity resolution can be increased.

Implicit Subspace Iteration

Consider the general eigenvalue problem [4] ΦS = Sµ, where Φ is an Rn×n square matrix, µ is a diagonal matrix of size
Rn×n containing the eigenvalues of Φ on its main diagonal, and matrix S of size Rn×n consists of the eigenvectors of Φ
in its columns. A set of Ns < n dominant eigenvectors corresponding to the first Ns eigenvalues of the largest absolute
values can be approximated in an iterative way. Let Sj of size Rn×Ns denote the matrix of the Ns dominant eigenvectors
after the jth iteration step. Starting from a random set of initial conditions S0 and taking an iteration, a new set Vj of size
Rn×Ns can be calculated according to the following iteration [4]

Vj = ΦSj (3)

Vj ≈ SjHj → Hj =
(
SH
j Sj

)−1
SH
j Vj (4)

Hj = GjλjG
−1
j (5)

Sj+1 = VjGj (6)

where Gj is the matrix formed by the eigenvectors of Hj and λj is a diagonal matrix of eigenvalues of Hj . Note, that in
a numerical implementation, the approximated eigenvectors should be normalized after each iteration steps.
If Sj is obtained after a sufficient number of iteration steps, it will converge to the dominant eigenvectors, and the basis
formed by the column vectors in both Sj and Vj span approximately the same space. Therefore, an approximate matrix
Hj of size RNs×Ns connecting Sj and Vj can be obtained using a pseudo-inverse calculation from the relation. After
several iteration steps, the eigenvalues of Hj provide a good approximation for the dominant eigenvalues of Φ. This way,
it is enough to compute the eigenvalues of a significantly reduced Ns-sized matrix Hj instead of the large n-sized matrix
Φ. The details of this iteration process can be found in [3, 4].
In this form, the Implicit Subspace Iteration iteration is just an iterative method to find the eigenvalues of a known matrix
Φ, however, the calculation of this matrix itself is the most time consuming operation if the time period is long m � n.
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Figure 1: Convergence of thee spectral radius for the tradition SDM and for Implicit Sub Space Iteration combined with time integration
with Explicit Euler (EE) method and higher-order Runge-Kutta methods

Dute to the m number of matrix multiplication in Eq.(2), the time complexity is proportional to O(mn3), if a spares
representation of Gi is used then it can tend to O(mn2) [8, 9]. To decrease the computational need one can reduce the
stepsize (m and n together) and increase the order of semi-discretization, however, it is complicated to increase it above
2 [2].

Direct time integration

It is also possible to determine the mapping in Eq.(3) without calculating the whole matrix Φ. The vector Vj can be
calculated directly by means of the time integration of the equations of motion of the given system with O(m) time
complexity. Thus, the advantage of implementing the ISIM is that the transition matrix Φ does not have to be calculated.
During the time integration process, one can use the same approximation as in the SDM (constant coefficients within the
time step), then the final results for the eigenvalues will be identical.
However, if we apply time integration, then any advanced higher-order fixed-time-step computation scheme can be used
to increasre the reat of convergence of the eigenvalues, while the time complexity will be the same. This is presented for
the well-known delayed Mathieu equation:

ẍ(t) + κẋ(t) + (δ + εcos(ωt))x = bx(t− τ). (7)

In Fig.1 the error of the largest multiplier is shown for paramteres κ = 0.01, δ = 5, ε = 1, b = 1, τ = 2π, ω = 0.01 (note,
that m = 100n). The reference values for the eigenvalues is computed of n = 215.

Conclusions

The combination of the IISI with fixed-step-time-integration have only a linear time complexity and the convergence rate
of the eigenvalues is the same as the order of the integration scheme. The next research goal is to the implement integrators
with variable step size, which will have a great advantage in the case when the change of the coefficients of the governing
equation are not smooth, however, the non-uniform steps size leads to a difficulty in the computation of Hj in Eq.(4).
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