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Summary. The qualitative differences in the behaviors of Hamiltonian and dissipative systems are profound. In particular, in Hamil-
tonian systems the existence of asymptotically stable solutions is impossible due to the Liouville’s theorem. By contrast, dissipative
systems usually exhibit eventual attraction of all phase trajectories to ω-limit sets such as fixed points, (quasi-) periodic or strange at-
tractors. In this work we present a class of dissipative mechanical systems which demonstrate mixed global dynamics, i.e., coexistence
of both attracting and Hamiltonian-like behaviors. Our main model is a well-known system of harmonically forced vibro-impact oscil-
lator with Amonton-Coulomb friction. In a vast majority of previous studies, it also includes viscous friction, and the global dynamics
of its state space is governed by the aforementioned attractors. However, if we omit viscous friction, we observe that the state space
is divided into regions with “regular" attraction, as well as regions with profoundly Hamiltonian dynamics, e.g., KAM-like tori. We
show that such local Hamiltonian behavior occurs for the phase trajectories with non-vanishing velocities. The stability analysis of the
periodic solutions confirms the above statement. We also demonstrate that similar mixed global dynamics can be observed in a broader
class of models including systems with x-dependent potentials as well as multi-particle systems.

Introduction

Model formulation
We consider a single-degree-of-freedom unit mass particle which displacement is constrained by two rigid walls (l <
x(t) < r). The particle is subject to external sinusoidal forcing of period T = 2π/ω and the Amonton-Coulomb dry
friction [1, 2]. The equation for motions l < x(t) < r is

ẍ+ f sgn (ẋ) = F cos (ωt). (1)

We assume that F > f , since otherwise any motion comes to stop. When x(t) = r, l the following impact rule [3] is
applied:

ẋ(t−) = −ẋ(t+). (2)

Dynamics of system (1)–(2), and its dependence on parameters, will be illustrated by the global phase portrait of the
stroboscopic time T map Φ : (x(0), ẋ(0)) 7→ (x (T ) , ẋ (T )). In particular, a fixed point of Φ corresponds to a periodic
solution of system (1)–(2).

Numerical investigations
A typical phase portrait of Φ with f = 0 is shown on Figure 1a. It presents an invariant island containing a fixed
point and periodic orbits which are surrounded by invariant curves representing quasiperiodic motions. Another region
of quasiperiodic motions is observed for large velocities. Between these two regions there is a chaotic sea (gray dots).
Furthermore, a horizontal segment of fixed points represents periodic solutions without impacts x(t) = − F

ω2 cos (ωt)+C.

(a) f = 0 (b) f = 0.1 (c) f = 0.3 (d) f = 0.5

Figure 1: Evolution of the phase portrait with increasing friction. Other parameters are the following: F = 1, ω = 1, R := r−l = 20.

Introducing friction drastically changes the phase portrait (Figures 1b–d). In particular, the segment of fixed points
corresponding to periodic solutions without impacts becomes an attractor. However, the invariant island of Hamiltonian
dynamics persists, thus, we observe coexistence of dissipative and conservative behaviors. The trajectories from the
invariant island have a non-vanishing velocity, and, therefore, we call such solutions non-sticking.
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Analysis

Hamiltonian dynamics of system (1)–(2) can be explained by lifting it to the unconstrained Hamiltonian system

q̈ +
∂V

∂q
=
f

R
, V (t, q) =

F

R
cos (ωt)W (q), W (q) =

{
q, 0 ≤ q < 1,

2− q, 1 ≤ q < 2,
W (q + 2) = W (q). (3)

Any non-sticking solution of (3) is mapped to a non-sticking solution of (1)–(2) by the simple relationship

x = R ·W (q) + l. (4)

Therefore, if all solutions starting from a domain Ω of the state space of system (1)–(2) are non-sticking and Ω is invariant
for the time T map Φ of this system, then Ω is a region of Hamiltonian dynamics. In particular, at least a small invariant
region Ω of Hamiltonian dynamics exists around every fixed point of non-degenerate non-resonant center type.

Stability analysis
Stability and type of a fixed point and the corresponding periodic solution is determined using the Floquet theory as
follows. Any trajectory of (1)–(2) can be represented as a sequence of motions and events of the following types: free
flight (ẋ 6= 0), sticking (ẋ = 0 over a nonzero interval of time), reflection from the wall (x = r, l) and a turning point
(change of sign of ẋ). Thus, the Jacobi matrix Φ′ can be obtained as a product of corresponding matrices (matrix related
to an instantaneous event is known as saltation matrix [4]). In particular, it is easy to show that matrices for free flights
and reflections of the walls have unit determinants. Thus, non-sticking trajectories, det(Φ′) = 1 which corresponds to the
phase area preservation.

Extensions

Mixed global dynamics can also be observed in systems with x-dependent potentials as well as systems with higher
degrees of freedom. For instance, one can consider system of n ≥ 2 elastically colliding particles with masses mi placed
between the same two walls. Again, in order to spot regions of Hamiltonian-like behavior we should check non-sticking
periodic trajectories of non-resonant center type. The linear stability analysis can be easily extended to the case of many
particles, however, in order to be volume-preserving the Jacobian Φ′ should be symplectic. It turns out that the saltation
matrix S related to the particle collision is not necessary symplectic. However, if the product of velocities of the two
colliding particles has the same sign before and after the collision, then the corresponding saltation matrix (for n = 2)

S =

[
AT 0
B A

]
with A =

1

m1 + m2

[
m1 −m2 2m1

2m2 m2 −m1

]
and B =

2F cos (ωt∗)(m1 −m2)m1m2

m1 + m2

(
m2ẋ1(t−∗ ) −m1ẋ2(t−∗ )

) [
−1 1
1 −1

]
,

(5)
is symplectic. When m1 = 1, m2 = 0.9, F = 1, ω = 2π, f = 0.005, R = 2, the two-particle system has a 3T -periodic
solution which linearization is symplectic. Figure 2 presents invariant tori in a neighborhood of this solution. The tori
coexist with an attractor consisting of periodic solutions without collisions or impacts.

(a) (b)

Figure 2: Panel (a): Time trace of a 3T -periodic solution of the two-particle system with m1 = 1 (blue), m2 = 0.9 (orange).
Panel (b): Projection of the phase portrait of the time T map Φ onto the (x1, x2)-plane exhibiting several invariant tori near a period 3
point (star).
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