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Summary. This paper investigates the nonlinear dynamic behavior of a rotating ring that forms an essential element in MEMS ring-based 

vibratory gyroscopes that utilize oscillatory nonlinear electrostatic forces. Mathematical model that incorporates geometric nonlinearities for 

the MEMS ring structure as well as a model that represents nonlinear electrostatic forces that act on the ring structure are formulated. 

Galerkin’s procedure is employed to reduce the equations of motion to a set of ordinary differential equations. Understanding the effects of 

nonlinear actuator dynamics is considered important for characterizing the dynamic behavior of such devices.  For investigating the dynamic 

response behavior of a ring-type vibratory angular rate, the equations of motion are simplified by ignoring the extensional vibrations, since 

the second resonant flexural mode is excited in this class of applications. Dynamic responses in the driving and the sensing directions are 

examined via time responses, phase diagram, and Poincare’ map plots when the input angular motion and the nonlinear electrostatic force 

are considered simultaneously. The analysis is envisaged to aid fabrication of this class of devices as well as for providing design 

improvements in MEMS-based Ring-type Gyroscopes. 

 Concept and Modeling 

In the present paper, nonlinear dynamic behavior of rotating thin circular rings for use in vibratory angular rate 

sensors have been investigated via numerical simulations. A homogenous, isotropic ring is chosen for the angular rate 

sensor. Cho [1] developed mathematical models for rotating ring based angular rate sensors for the purpose of 

investigating linear as well as  nonlinear dynamic behavior and dynamic stability of angular rate sensors which are 

subjected to external excitation. In the past, Huang and Soedel [2] and Natasiavas [3], among others, have also studied 

the nonlinear dynamic behaviour of rotating thin circular rings. Dynamic response behavior of rotating thin circular rings 

for use in vibratory angular rate sensors was investigated by Gebrel et al [4] via numerical simulations by employing the 

linearized model considering the second mode. In this study, a suitable theoretical model is developed for the purposes 

of representing the nonlinear electromagnetic actuation forces that are used for exciting the ring from two positions to 

obtain improved device sensitivity. Figure 1(a) illustrates the geometry and parameters used in the present study 

while Figure 1(b) illustrates the two degenerate modal configurations associated with the second flexural mode, 

and are separated by 45 degrees. The schematic of the rotating ring geometry used in present study have been described 

in detail in [1, 4].  

 

                         
(a)                                                                                       (b)                                                                                       

Figure 1: (a) schematic of the rotating ring geometry, and (b) Visualization of second flexural modes of ring 

 

In the present paper, the nonlinear equations of motion in terms of the generalized coordinates associated with the flexural 

coordinates 𝐴𝑛 and 𝐵𝑛 [1, 5] are developed for the purposes of illustrating the dynamic behavior. The discretized equations 

of motion that govern the dynamics with suitable nonlinear harmonic electrostatic forces are derived:  
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where 𝜌  is mass density, 𝐸I represents flexural rigidity, 𝐴 is the cross sectional area of ring,  𝑏 denotes axial thickness of 

ring, ℎ is radial thickness, 𝑟 is the mean radius of the ring, and 𝑘𝑟 support spring stiffness in the radial direction. The 

𝐵𝑛 

𝐴𝑛 
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quantification of the nonlinear terms are governed by the parameter 𝛾. Oscillatory external nonlinear electrostatic actuator 

force that acts along the 𝐴𝑛 direction is considered to have a magnitude   𝑓𝑁𝑒𝑠  and frequency 𝜔  , while input angular 

velocity and acceleration, respectively, are denoted by Ω and Ω̇ . The area moment of inertia of the ring cross section 

about its neutral axis is expressed as 𝐼 = 𝑏ℎ3 12⁄ . The parameter 𝜁  represents the mechanical damping ratio, and 𝑛 

denotes the number of modes which is taken to be 2 in the present study. The angular positions of electrostatic forces that 

excite the ring in the primary direction is denoted by 𝜃𝑖 , 𝑖 = 1,2,3,4. In order to represent the oscillatory electrostatic 

force, a suitable theoretical formulation is employed:  
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where the parameter 𝜀0 represents the permittivity of air, 𝑉 represents the applied voltage between the electrode and the 

ring, 𝑎 represent the electrode width which represents the space between electrode and the surface of the ring,  𝑑 is the 

distance between electrode and ring 

 

Results and Discussion 
 

For the purposes of predicting the nonlinear response characteristic of MEMS ring-type gyroscope, equations (1) and (2) 

have been solved numerically. Parameters associated with a typical MEMS ring-type gyroscope are considered. The 

following ring design parameters: radius of 500 𝜇𝑚, thickness of 12.5 𝜇𝑚  , and a height of 30 𝜇𝑚 with Young's modulus 

of 210 𝐺𝑝𝑎 and the density of 8800 𝐾𝑔 𝑚3⁄  have been chosen. At a nominal input angular rate of 2 𝜋 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  and a 

typical device high quality factor of 1 × 105 , the resulting frequencies have been evaluated as 𝜔1 = 

2.1422 × 105 (𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ), and 𝜔2 = 2.1428 × 105 (𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ). The generalized coordinates 𝑞1 = 𝐴𝑛 ℎ⁄ , 𝑞2 = 𝐵𝑛 ℎ⁄  have 

been used for the non-dimensional equations. For an input angular velocity Ω = 2 𝜋 (𝑟𝑎𝑑 𝑠𝑒𝑐⁄  ), under nonlinear 

oscillatory electrostatic excitation, the time response of the ring in the sensing direction in the presence of geometric 

nonlinear terms is depicted in Figure 2(a). Figure 2(b) depict the phase portrait based on the steady-state response in the 

sensing direction. The effects of nonlinearities due to the nonlinearities of the system as well as nonlinear electrostatic 

force are evident from the plots. Furthermore, nonlinearity can be seen in the Poincare’ map results as shown in Figure 

2(c), where the Poincare’ maps appear as a cloud of unorganized points in the phase plane in Figure 2(b) due to the 

influence of nonlinear terms in the model as well as nonlinear actuator. Internal resonance behavior is not analyzed in this 

study since the natural frequencies are close to each other and cannot be equal in the typical device operating range. 

 
                                         (a)                                                             (b)                                                                (c)  

Figure 2: (a) Time Response , (b) Phase diagram, and (c) Poincare’ map.  

Conclusions 

Nonlinear dynamic behavior of a MEMS-scale ring-type vibratory gyroscope has been examined via numerical 

simulations. The device exhibits nonlinearity in the presence of geometric nonlinear term in the model which may be 

attributed to high vibration amplitudes. In addition, nonlinearities due to electrostatic actuation have also been 

incorporated. Results on the dynamic response obtained via time-response, Phase portraits and Poincare’ maps indicate 

significant influence of geometric nonlinearities on the resulting steady state behavior. The analysis is envisaged to aid 

fabrication of this class of devices as well as for providing design improvements in MEMS Ring-based Gyroscopes. 
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