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Parametrically driven morphing of thin piezoelectric surfaces
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Summary. The possibility of exploiting the parametric resonance phenomena to perform morphing of piezoelectric surfaces is here
investigated analytically and numerically. The case study consists of a PVDF beam subject to an in-plane pulsating strain applied
through voltage variation. The dynamical excitation induces an out-of-plane parametric resonance of the beam which can be driven to
excite desired individual modes or combination of them through nonlinear coupling. A nonlinear reduced order model for a piezoelectric
thin Euler-Bernoulli beam is developed considering the multi-physics piezo-elastic coupling. The conservation of the electric charge is
enforced in 3D while the equations of motion are expressed in 1D using the arclength parametrization along the beam centerline. The
analytical treatment is based on the method of multiple scales and allows to obtain the region of the forcing parameters for which the
parametric resonance is achieved. The analytical solutions are validated against numerical results provided by the finite element code
ABAQUS through which a full 3D nonlinear model is addressed. The analytically obtained transition curves (representing the boundary
between resonant and non resonant behavior in the space of forcing parameters) and the frequency response curves are compared to
those obtained numerically achieving a good agreement. The voltage thresholds for which the parametric resonances are induced, and
the robustness of the responses suggest that the investigated phenomenon is a promising strategy for surface dynamic morphing.

Introduction

A piezoelectric formulation valid rigorously only for parallelepiped-shaped beams is proposed. The model is focused on
the parametric resonances induced by a pulsating voltage whose gradient is defined along the thickness [1]. The transition
curves defining the forcing parameters for which the beam exhibits a parametric resonance are obtained using the method
of multiple scales [2, 3]. The nonlinear equations of motion of the continuous piezoelectric beam are reduced employing
a full-basis Galerkin-discretization of the continuous piezoelectric beam [4, 5].
Finally, the closed form asymptotic results are compared with those obtained by the direct integration of the nonlinear
dynamic problem performed with the nonlinear finite element software ABAQUS [6]. The results show a good agreement
and the simplified hypotheses adopted for the piezoelectric beam model are confirmed. The implemented assumptions
could be also used for developing a simplified piezoelectric shell model.

Equations of motion

Consider the 3D Euclidean space with a Cartesian fixed frame (s, y, z) where the position of each point can be defined by
a vector x = se1 + ye2 + ze3. The straight beam exhibits a rectangular cross-section of edges b and h and the position
of each section along the beam span l, in the reference configuration, is described the vector r0 = se3 with s ∈ [0, l].
The local frame in the reference configuration is denoted by (b1

0, b2
0, b3

0). Unit vectors b10 is collinear with e1 while
the pair (b20, b3

0) represents a centered and principal frame for the beams cross-section.
The mechanical problem is formulated in the plane e1 − e3, and the displacement of the central line is denoted by
u(s) = u(s)b1

0 + v(s)b3
0. The rotation of the beam cross sections is θ(s) = θ(s)b2

0 where b20 coincides with e2.
According to Saint-Venant ansatz, stresses and strain states are simplified: σ22 = σ33 = σ23 = σ12 = 0 ε22 = ε33 =
γ12 = γ23 = γ13 = 0.
On the other hand, it is assumed that the voltage V varies only in the z direction according to the electric boundary
conditions to which it is subject. We are interested in the problem in which the top beam surface at z = h/2 is connected
to ground and presents V (h/2) = 0. On the bottom surface a voltage different from zero is assigned, V (−h/2) = Φ.
Moreover, it is assumed that the potential varies with a quadratic law across the relatively small beam thickness according
to

V (z, t) = Φ0(t) + Φ1(t)z + Φ2(t)
z2

2
. (1)

. Imposing the potential boundary conditions given above yields

Φ1(t) = −Φ(t)

h
. (2)

The beam axial force and the bending moment can be obtained by integration over the cross-section of the elastic axial
tension.
The equations of motion for the nonlinear beam in the current local frame can be written as

N ′ +
µ

ν
M ′ = ρAü cos θ + v̈ sin θ, (3)

µN + (
M ′

ν
)′ = −ρAü sin θ + v̈ cos θ. (4)

where the shear force has been condensed using equation for the balance of the angular momentum, the prime indicates
differentiation with respect to s and the overdot with respect to time t. Equation (4) can be condensed considering that
the axial force is constant along the beam.
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Figure 1: Parametric resonance regions for the PVDF sample where the black solid lines are obtained according to the fifth order
solutions for the lowest three beam modes assuming ζ = 3 % and V0 = 5 V; the black and red circles denote nonresonant and resonant
responses provided by ABAQUS while the blue circles indicate resonant responses for the plates modes; the gray and blue vertical thin
lines are placed at twice the frequencies of the beam-like modes and twice the plate-like frequencies, respectively; the black dashed
horizontal lines denote the amplitudes of the AC voltage V1 for which the ABAQUS simulations were run, namely, (1.5, 2.5, 5) V.

The Method of Multiple Scales

The unknown displacement is expressed as follows

v(s, t) = εv1(s, t0, t2, t4) + ε3v3(s, t0, t2, t4) + ε5v5(s, t0, t2, t4). (5)

and Φ1 = V0 + ε2V1 cos Ωt where the forcing frequency is Ω = 2ω + ε2σ. The parameter σ represents the detuning of
the forcing frequency with respect to twice of the frequency of the excited mode. Moreover, the damping ratio is assumed
as ε2ζ. Collecting the terms with the same order of ε, the nonlinear equation of motion can be written up to the 5th order
and solved asymptotically.

Results

The transition zones identified by ABAQUS are in accordance with the transition curves evaluated with the closed form
expression. In fact, the threshold points provided by ABAQUS are very close to the asymptotically obtained curves (see
Fig. 1). In particular, the correction obtained with the 5th order frequency response curves (black solid lines) show that
the fully numerical and reduced model are in close agreement.

Conclusions

The present paper investigates the parametric resonance conditions induced by a pulsating voltage in a PVDF copolymer
beam/plate. The piezoelectric properties of the PVDF film are exploited to induce an initial tensile stress that makes
the structure stiffer and increases the natural frequencies. A nonlinear piezoelectric beam model is developed and the
transition curves for the lowest three modes are computed using the method of multiple scales. The obtained results
are validated via ABAQUS through which the piezoelectric system is addressed within geometrically nonlinear problem
formulation.
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