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A Reynolds’ Limit Formula for the Shear Stress in Dorodnitzyn’s Boundary Layer
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Summary. Shear Stress growth is an indicator of Boundary Layer separation. The main difficulty to obtain clear descriptions of its
behavior lies in Navier-Stokes Equations’ non-linearity. On the other hand, Dorodnitzyn stated a Gaseous Boundary Layer problem,
valid in atmospheric conditions, and deduced a second-order quasi-linear problem for a transformation of the Shear Stress. This article
presents a mathematical formalization of this last problem and a Reynolds’ Limit Formula for it, deduced with Bayada and Chambat’s
change of variables. For general compressible Reynolds’ equations, the problem was solved by Chupin and Sart in 2012. Undoubtedly,
there is a mathematical formalization for Dorodnitzyn’s model previous from the one that is given here, but the author has not been
able to find it in the literature. In earlier work, the author verified his first step simplification. Now, the formalization is extended to
Dorodnitzyn’s second-order quasi-linear problem. Then, the small parameter problem is deduced, and a bound, independent of the
parameter, is found in the corresponding Sobolev Space to prove the existence of a Reynolds’ Limit Formula for Dorodnitzyn’s Shear
Stress problem.

Abstract

The Earth’s Global Mean Temperature is going to increase by, at least, 1.5◦C in the next 10 to 33 years [3, p. 6]. As a
consequence, there will be an increment in the number of severe droughts and flooding [3, p. 9]. Its origin, atmospheric
convection, could be studied as a boundary layer separation problem. To identify its sources and sinks, the suggestion is
to study shear stress growth deduced from approximate gaseous boundary layer models in atmospheric conditions.

Figure 1: Dorodnitzyn’s Rectangular DomainR= (0, L)× (0, h) ∈ R2

In 1942, Dorodnityzn stated a Gaseous Boundary Layer problem [2] in a rectangle R = (0, L) × (0, h) ⊂ R2, where
L >> h > 0 [2], of three simplified stationary Conservation of Mass, Conservation of Momentum, and Conservation of
Energy laws, Eq. (1), (2) and (3),

∂ (ρ u)

∂x
+
∂ (ρ v)

∂y
= 0 ; (1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= − ∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
; y (2)

ρ

[
u
∂ (cp T )

∂x
+ v

∂ (cp T )

∂y

]
=

∂

∂y

[
κ
∂T

∂y

]
+ µ

(
∂u

∂y

)2

+
∂p

∂t
, (3)

where one can assume that the stationary density ρ ∈ L2 (R; (0,∞)); that the horizontal velocity component u ∈ L2 (R)
has generalized derivatives ∂u/∂x, ∂u/∂y, ∂2u/∂y2 ∈ L2 (R); the vertical velocity component v ∈ L2 (R); the absolute
temperature T ∈ L2 (R; (0,∞)) with ∂T/∂y, ∂2T/∂y2 ∈ L2 (R); the dynamic viscosity µ ∈ L2 (R), the pressure
p ∈ L2 (R), the thermal conductivity κ ∈ L2 (R), all of them with first order generalized derivatives in L2 (R); and both
products ρ u, ρ v ∈ L2 (R). This is, assume ρ, u, v, T , µ, p and κ are elements of the space W 1,2 (R), so that a Leibnitz
Rule for product differentiation is valid in the non-empty open domain R ⊂ R2 when both factors and all the generalized
derivatives involved are elements of L2(R) [4, p. 11]. The value cp is the specific heat at constant pressure for dry air,
and we have four Ideal Gas Thermodynamic Laws, Eq. (4), (5), (6), (7): the Prandtl number Pr = 1,

Pr =
cp µ

κ
= 1; (4)

the Equation of State for the Universal Gas Constant R∗, a volume V =
∫∫∫

B
dx dy dz of a ball B(r,x0) ⊂ R3 of

positive radius r > 0 and center x0 = (x0, y0, z0) such that (x0, y0) ∈ R and R × {0} ⊂ B, and the number of moles n
of an ideal gas corresponding to the volume V ,

p V = nR∗ T ; (5)
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the adiabatic polytropic atmosphere [7, p. 35] where b = 1.405 and c are constants,

p V b = c; (6)

and the Power Law [6, p. 46]
µ
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. (7)

The boundary conditions, Eq. (8), (9), (10), (11), (12), (13), are given by the free-stream velocity U > 0, the no slip
condition,

(u, v)|{(x,h) : 0≤x≤L} = (−U, 0), (8)
(u, v)|{(x,0) : 0≤x≤L} = (0, 0), (9)

the free-stream temperature Th > 0, the free-stream dynamic viscosity µh > 0,

T |{(x,h) : 0≤x≤L} = Th > 0, (10)
µ|{(x,h) : 0≤x≤L} = µh > 0. (11)

periodic conditions for all y ∈ [0, h]:
(u (0, y) , 0) = (u (L, y) , 0) ; (12)

and a Neumann condition:
∂T
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= 0. (13)

As Busemann previously did in 1935, Dorodnitzyn expressed T in terms of u, but considers the Conservation of Energy
Law in terms of the total energy per unit mass, E = cpT + u2/2, in the form presented by Luigi Crocco in 1932. Addi-
tionally, he includes a pressure variation term, ∂p/∂x, and so allows the possibility of a Boundary Layer separation. By a
successive substitution of T (u), this system of seven equations is reduced to a system of just two with inherited boundary
conditions in terms of a stream function defined, in the formalisation, by means of a generalized Green’s Theorem [5, p.
121] that is valid for elements of the Sobolev Spaces W 1,2(R). Moreover, he defined a diffeomorphism R

s //Π that
allows writing von Kármán’s Integral Formula for a compressible fluid in an incompressible form in a polygonal domain
Π = s(R) where (x, y) �

s //(`, s) , ` (x̂, ŷ) � //
∫ x̂
0
p (x, ŷ) dx and s (x̂, ŷ) � //

∫ ŷ
0
ρ (x̂, y) dy . This way, he opens

the road to adapt Blasius’ method to state the stream function problem as an Ordinary Differential Equation.
In order to do this, he applies a subsequent diffeomorphism Π

z //S that takes the polygon Π into a strip band of infinite
positive heights S = z(Π) with (`, s) �

z //(`, z) and z (`, s) � //s/
√
` . In terms of z, the shear stress τ = µ ∂u/∂y

becomes τs(z) = (a x1/2 τ) ◦ s−1 ◦ z−1(z) for a constant a. If we denote us(z) = u ◦ s−1 ◦ z−1(z), i0 = cp T0
and σ0 = 1 −

(
U2/2i0

)
where T0 = Th + U2/(2cp) is the absolute temperature value at height y = 0 in R, then

(u, v, T, p, ρ, µ, κ) is a classical solution of Eq. (1), (2), (3), (4), (5), (6), (7) with boundary conditions (8), (9), (10), (11),
(12), (13) if and only if τs ∈ C1(0,∞) satisfies the second-order quasi-linear problem:
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with inherited boundary conditions and A = 1/2 · (n R∗ T0)/V · T
2b
b−1

0 · σ
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0 . Bayada and Chambat’s change of

variables R
φε //Rε for ε = h/L > 0 with (x, y)

� φε //(x/L, y/ (Lε)) provides a small parameter problem [8] for the
sequence (vε)ε = (uε, vε)ε where uε = 1

L u and vε = 1
Lε v. This way, there is a inherent adimensional problem for

the sequence (τ εs ) so that the existing bound found for (uε) in [8] is valid for (τ ε), and we can derive a Reynolds’ Limit
Formula for Dorodnitzyn’s Shear Stress problem.
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