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Summary. The stability of steady-state solutions is typically assessed by means of local criteria. As an example, the eigenvalues’ real
parts indicate linear stability of an equilibrium position against small perturbations. However, realistic dynamical systems may exhibit
multiple co-existing solutions. If the perturbations are not small, local stability measures have only a limited value for evaluating the
effective probability of arriving at one of the multiple solutions. Therefore, global methods are required to evaluate the attractiveness
of a state for finite perturbations. This work illustrates the concept of basin stability for a frictional oscillator that exhibits bi-stability.
The results indicate how the global basin stability measure can complement conventional stability considerations.

Introduction

Dynamical systems are well-known to exhibit multistability, i.e. multiple stable states co-exist at a given system con-
figuration. In this scenario, only the initial conditions and instantaneous perturbations dictate on which state the system
will end up. For example, Gräbner et al. [1] report experimental observations of bi-stability in brake system vibrations.
Recently, Jahn et al. [2] have discussed a friction-excited system that exhibits multistability via periodic orbits that com-
pete with chaotic dynamics. Classical linearization-based approaches, such as eigenvalues or Lyapunov exponents, asses
a state’s stability by investigating the local behavior of small perturbations. The absolute values of those metrics quantify
the rate of convergence (for stable states), or divergence (for unstable states), and classify the stability in a binary fashion.
For example, the eigenvalue’s real part indicates the growth of small perturbations in the vicinity of a fixed point, and
hence the equilibrium is stable for a negative real part. However, local linear stability concepts cannot indicate the most
desirable state amongst the multiple co-existing ones. This scenario is particularly unsatisfactory if some of the stable
states are undesired for reasons of increased vibrations, noise, wear, or fatigue. The concept of basin stability [3] relates
to the volume of the basin of attraction B. The basin stability SB of a particular state indicates the volumetric fraction
of initial states that converge to the attracting set with respect to the overall state space volume. Therefore, it is a global
nonlinear measure for the attractiveness of states, i.e. the basin stability can adequately assess the stability of a state under
non-small perturbations. In practical system dynamics, the knowledge of multiple solutions and their stability, as typically
displayed in bifurcation diagrams, is only one piece of information. The likelihood of the system arriving at one of those
solutions may be of even greater importance during the operation of a mechanical structure or machine. This works strives
to illustrate the concept of basin stability on the example of a bi-stable frictional oscillator.

Methods

We study the dynamics and stability of a single-degree-of-freedom systemmẍ+cẋ+kx = F , see Figure 1 (a), following

F = −Nµ (vrel) sign (vrel) , vrel 6= 0, vrel = ẋ− vd
|F | < µstN, vrel = 0,

µ(vrel) = µd + (µst − µd) exp

(
−|vrel|

v0

)
,

(1)

that experiences friction-induced vibrations (FIV). The friction formulation features a velocity-dependent weakening-
strengthening behavior that gives rise to an instability of the steady sliding solution, see Figure 1 (b). A self-excited
stick-slip limit cycle exists for the parameter range 0 ≤ ṽd ≤ 1.84 and, most importantly, co-exists with the steady
sliding solution in the bi-stability regime 1.11 ≤ ṽd ≤ 1.84 resulting from the subcritical Hopf bifurcation. Hence, in this
parameter range, there exist two stable states in parallel, as depicted in Figure 1 (c). Depending on the initial condition or
instantaneous perturbations, the system will either end up in the low-energy steady sliding state, or on the high-intensity
stick-slip cycle.

Results

Conventionally, the stability of the equilibrium solution, i.e. the steady sliding state, is assessed by the eigenvalue’s real
part< (λ). However, in realistic systems, it is often unknown what type of perturbations the system may experience during
operation. In our model, the unstable periodic orbit (UPO) represents the separatrix between the basins of attraction b for
the two stable states. A perturbation of x̃ < −0.65 at ṽd = 1.5 would result in a jump from the steady sliding state to
the limit cycle. The eigenvalue in Figure 2 (a) grows for a decline in belt velocity, indicating that the steady sliding state
becomes less stable against perturbations up to ṽd = 1.11. However, the linear stability analysis is unable to show how
fast the basin B of the steady sliding state shrinks for declining belt velocities ṽd. Hence, the eigenvalue analysis does not
detect the critical transition at ṽd = 1.84 where the systems transits into the bi-stability regime. On the contrary, the basin
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Figure 1: (a) single-degree-of-freedom frictional oscillator, (b) bifurcation diagram for the non-dimensional belt velocity ṽd, and (c)
phase plane for ṽd = 1.5. Stable (unstable) solutions are indicated by solid (dashed)lines. The stable steady sliding state (blue
spiral trajectory) co-exists with the unstable periodic orbit (black dashed line) and the stable stick-slip limit cycle (red trajectory). The
non-dimensional system (̃·) is evaluated for µd = 0.5, µst = 1, ξ = 0.05, N = 1 and ṽ0 = 0.5 following the work [4]

stability SB in Figure 2 (b) indicates the global degree of stability, which changes quickly at the transition point. Here,
SB is a much more reliable proxy for detecting the critical transition of the steady sliding state. While the linear analysis
states a negative eigenvalue at ṽd = 1.5, SB indicates that the likelihood of converging to the steady sliding state is in fact
only SB = 0.255. Hence, the system is three times more likely to exhibit stick-slip vibrations if the initial conditions or
perturbations were randomly drawn from the given state space regime.
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Figure 2: (a) eigenvalue’s real part as a function of the belt velocity. The linearly unstable regime for < (λ) > 0, shaded in gray, is
reached at ṽd = 1.11. (b) basin stability SB of the steady sliding equilibrium and the stick-slip limit cycle. Initial conditions were
drawn from x̃0 ∈ {−2, 3} and ˙̃x0 ∈ {−2, 2} using a uniform grid of 20× 20 points.

Conclusions

The basin stability is studied as a measure for the state’s relevance in a multistability scenario. While the (nonlinear)
stability of this small oscillator is rather straight-forward, the basin stability seems to be a particularly useful stability
measure for more complex, i.e. higher-dimensional, systems that feature a complicated multi-stability behavior [5].
Regarding the actual motion during operation, the basin stability is likely to contribute to higher prediction quality of
numerical models of mechanical structures. As a second model, a frictional oscillator with multiple degrees of freedom
and a more complicated dynamical behavior [2] will be studied in the full conference proceeding.
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